
fernmeldelehrling.de

Repetitor der Digitaltechnik

Handbuch der Elektronik

Teil 1 - "Analogtechnik"

In diesem Lehr- und Lernbuch wird folgender Lehrstoff einprägsam und anschaulich behandelt:

Kurze Wiederholung der elektrotechnischen Grundlagen

Die physikalischen Grundlagen der Halbleiter

Die Halbleiterdioden und ihre Anwendung

Die Transistorgrundschaltungen

Verstärkerschaltungen mit Transistoren

Generatoren mit Halbleiterbauteilen

Vierschichthalbleiter

Elektronik in der Stromversorgung

Fotoelektronische Bauelemente

Feldeffekt-Transistoren

Das Lehrbuch enthält eine Vielzahl von Abbildungen und Kennlinien und weiter zahlreiche ausführliche Rechenbeispiele, die für den Techniker auf praktische Fälle zugeschnitten sind.

Handbuch der Elektronik

Teil 2 - "Digitaltechnik"

Anschließend an das Stoffgebiet der Analogtechnik wird im Teil 2 des "Handbuchs der Elektronik" die Digitaltechnik mit folgenden Schwerpunkten behandelt:

Grundlagen der Digitaltechnik (Dualzahlen, verschiedene Codearten, ihre Vorund Nachteile, Einführung in die Schaltalgebra, Schaltnetze, ihre Analyse und Synthese, Lesen einfacher Verknüpfungspläne).

Baugruppen (Dioden und Transistoren als Schalter, Grundverknüpfung mit diskreten Bauelementen, Schaltnetze mit diskreten Bauelementen, Übungsbeispiele zur Minisierung und Typisierung).

Impulsformer (Schaltungen mit RC-Gliedern, Schmitt-Trigger).

Kippschaltungen (bistabile, astabile und monostabile Kippstufen, Dimensionierungsbeispiele).

Schaltwerke (Vorwärts- und Rückwärtszähler, asynchron und synchron, Schieberegister).

Datenübertragung (Parallel- und Serienübertragung).

Magnetkerntechnik (Grundlagen, Speicherkerne, Speichermatrix, Ein- und Ausleseverfahren).

EDV-Anlagen (Grundsätzliches über EDV-Anlagen, Schaltung und Betrieb eines einfachen Rechenwerkes).

Aufbau elektronischer Schaltkreise (gedruckte Schaltungen, integrierte und hybride Schaltungen).

Zahlreiche Abbildungen, Schaltungen und Rechenbeispiele ergänzen den Lehrntoff.

Repetitor der Digitaltechnik

Herausgegeben mit Unterstützung des Bundesministers für das Post- und Fernmeldewesen

390 Fragenkomplexe mit rund 1500 vorprogrammierten Antworten

Herausgeber: Institut zur Entwicklung moderner Unterrichtsmedien e.V. 28 Bremen 1 · Bahnhofstraße 10

Vorwort

Der "Repetitor der "Digitaltechnik" — Digitaltechnik programmiert und dadurch leicht gemacht —" lehnt sich eng an den Teil 2 — Digitaltechnik des "Handbuchs der Elektronik" an. Der Repetitor soll helfen, das erworbene Wissen zu vertiefen und zu festigen. Aufgrund dieser Erfolgskontrollen vermag der Leser eventuelle Lücken oder Unsicherheiten zu erkennen und kann dann den entsprechenden Abschnitt im Band "Digitaltechnik" noch einmal durcharbeiten.

Um hierbei für den Lernenden ein wirksames und zeitsparendes Arbeiten zu ermöglichen, wurde die Antwortauswahlmethode gewählt. Bei diesem Verfahren sind zu jeder Frage mehrere Antworten vorgegeben, von denen immer mindestens eine richtig ist. Diese Methode erspart es dem Leser, die Antwort selbst zu formulieren.

Die einzelnen Fragen führen schrittweise durch den Lehrstoff des genannten Bandes. Damit beim Durcharbeiten des Repetitors ein möglichst großer Lerneffekt erzielt wird, sollten zuerst alle Fragen auf einer Seite nacheinander gründlich durchgelesen und dann die für richtig gehaltenen Antworten angekreuzt werden. Anschließend wird sodann die Seite am rechten Rand so weit umgeschlagen, daß die auf der nächsten Seite stehenden Kästchen mit den richtigen Markierungen sichtbar werden und mit den eigenen Antworten verglichen werden können. Sind alle Antworten richtig, so kann die Seite ganz umgeblättert und der nächste Fragenkomplex in Angriff genommen werden. Ist eine Frage dagegen falsch beantwortet worden, so sollte der Leser die Frage und seine Antwort noch einmal überdenken. Findet er hierbei die richtige Lösung nicht, dann gibt die kurze Erklärung vielleicht die notwendigen Aufschlüsse. Ist auch dies nicht der Fall, so sollte der entsprechende Abschnitt im Band "Digitaltechnik" noch einmal durchgearbeitet werden.

Zur Erläuterung der Antworten sind neben den richtigen Markierungen oft kurze Erklärungen oder Hinweise auf häufig vorkommende Fehler abgedruckt worden, die das Frage- und Antwortspiel sinnvoll abrunden sollen.

Die Herausgeber

Stand: Herbst 1971 Nachdruck, auch auszugsweise, nicht gestattet

Inhaltsverzeichnis

Bei Angabé der Abschnitte handelt es sich um Verweisungen auf das "Handbuch der Elektronik"; Teil 2 — Digitaltechnik.

			Seite
Zu Abschnitt	1:	Grundlagen der Digitaltechnik	
		Fragen 1 bis 120	7— 66
Zu Abschnitt	2:	Verknüpfungsglieder	
		Fragen 1 bis 40	67— 84
Zu Abschnitt	3:	Impulsformer	
		Fragen 1 bis 19	85— 94
Zu Abschnitt	4:	Kippschaltungen	
		Fragen 1 bis 42	95—118
Zu Abschnitt	5:	Schaltwerke	
		Fragen 1 bis 33	119—136
Zu Abschnitt	6:	Codewandler	
		Fragen 1 bis 12	137—142
Zu Abschnitt	7:	Datenübertragungstechnik	
		Fragen 1 bis 5	143—146
Zu Abschnitt	8:	Magnetkerntechnik	
		Fragen 1 bis 51	147—172
Zu Abschnitt	9:	Grundsätzliches über EDV-Anlagen	
		Fragen 1 bis 32	173—184
Zu Abschnitt	10:	Aufbau elektronischer Schaltkreise	
		Fragen 1 bis 36	185—196

fernmeldelehrling.de

Zu Abschnitt 1

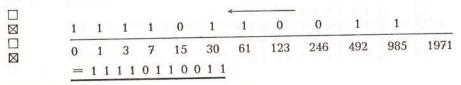
Grundlagen der Digitaltechnik*)

1.	Arbeitet eine Schieblehre analog oder digital?
	□ a) sie arbeitet analog□ b) sie arbeitet digital
	□ c) sie arbeitet weder analog noch digital
2.	Mathematische Operationen lassen sich durchführen
	 □ a) nur mit digitalen Größen □ b) nur mit analogen Größen □ c) sowohl mit digitalen als auch mit analogen Größen
3.	Wieviel verschiedene Ziffern benötigt das Oktalsystem, das als Stellenwerte die Potenzen zur Basis 8 verwendet?
	□ a) 2 □ b) 4 □ c) 8 □ d) 10
4.	Große EDV-Anlagen rechnen mit Dualzahlen statt mit Dezimalzahlen, weil
	 a) Dualzahlen eine kleinere Stellenzahl haben b) Dualzahlen nur zwei Ziffern benötigen c) Dualzahlen eine größere Stellenzahl haben d) die Rechenregeln im Dualsystem einfacher sind
5.	Der Dualzahl 1 0 1 1 0 1 1 1 entspricht die Dezimalzahl
	□ a) 91 □ b) 183 □ c) 193 □ d) 367

[&]quot;) Vgl. hierzu Abschnitt 1 in dem "Handbuch der Elektronik; Teil 2 — Digitaltechnik".

zu	1.	Merke:
		Die Offnung einer Schieblehre kann innerhalb des Meßbereiches jeden Wert annehmen, und jeder Wert kennzeichnet eine andere Länge. Das ist die charakteristische Eigenschaft einer analogen Größe. Beim Ablesen des Meßwertes erfolgt eine Digitalisierung; der analogen Größe wird ein Zahlenwert zugeordnet.
zu	2.	
		Mathematische Operationen lassen sich sowohl mit digitalen Größen (z.B. in Digitalrechnern, Zählern usw.) als auch mit analogen Größen (z.B. in Analogrechnern, Wattmetern, mit einem Rechenschieber usw.) durchführen.
zu	3.	Merke:
		Bei allen polyadischen Zahlensystemen ist die Anzahl der erforderlichen verschiedenen Ziffern einschließlich der Null gleich der Basis.
zu	4.	
		Es ist technisch einfacher und betriebssicherer, in jeder Stelle nur zwei Ziffern zu unterscheiden. Die einfachen Rechenregeln führer zu einem einfach aufgebauten Rechenwerk. Für diese Vorteile muß man die größere Stellenzahl bei Dualzahlen in Kauf nehmen
zu	5.	
		1 0 1 1 0 1 1 1
		1 2 5 11 22 45 91 183

6.	Der Dua	lzahl 0, 1 1 0	0 1 entsp	oricht die D	ezimalzahl	
	□ b)	0,75005 0,6125				
		0,78125 0,8375				
7.	Der Dua	lzahl 1 0 1 0	1 0 1, 1 0	0 1 0 1 en	tspricht die	Dezimalzah
	□ a) □ b) □ c) □ d)	85,78125 191,65625				
8.	Der Dez	imalzahl 1971 e	entspricht	die Dualzal	al	
		1 1 1 0 1 1				
		1 1 1 1 0 1 1 1 1 1 0 1 0				
		0 0 1 1 1 1				
9.	Der Dez	imalzahl 0,8437	75 entspric	ht die Dual	zahl	
		0, 1 1 1 0 1				
		0, 1 0 1 1 1 0, 1 1 0 1 1				
		0, 1 1 0 1 1				


zu 6.

0, 1	1	0	0	1
0,78125	0,5625	0,125	0,25	0,5
	4			

zu 7.

\boxtimes	1	0	1	0	1	0	1	
	1	2	5	10	21	42	85	
		1		0	1		0	1
	0,6	5625	C	,3125	0,6	525	0,25	0,5

zu 8.

Merke:

Nullen vor der höchsten Stelle vor dem Komma ändern den Zahlenwert nicht.

zu 9.

 \boxtimes

 \boxtimes

Merke:

Nullen nach der letzten Stelle hinter dem Komma ändern den Zahlenwert nicht.

_ 10 _

10	Der	Dezimalzahl	875 875	entspricht	die	Dualzahl
4 60	1001	TO CETTITUTE COLLECTION	0,0,0,0	CHICOPATERIA	mer c	To ce ce a mi ce a m

a)	1	1	0	1	1	0	1	0	1	1,	1	1	1	
b)	1	0	1	1	0	1	1	0	0	1,	1	1	1	1
c)	1	1	0	1	1	0	1	0	1	1,	1	0	1	
d)														

11. 1 1 0 0 1 0 1 + 1 0 1 1 0 1 ergibt

a)	1	0	0	1	0	0	1	0	\triangle	73	
b)	1	0	0	1	0	1	0	0	\triangle	148	
c)	1	0	0	1	0	0	1	0		146	
d)	1	0	1	0	0	1	0	0	\triangle	164	

12. 1 1 1 1, 1 1 1 1 + 0, 0 0 0 1 ergibt

a)	1	1	1	1, 1	1	1 1	1	\triangle	15,96875
b)	1	0	0	0 0	\triangle	16			
c)	1	1	1	1, 0	0	\triangle	15		
d)	1	0	0	0 1	\triangle	17			

13. 1 0 1 0 1 0 1 — 1 1 1 1 1 1 ergibt

a)	1	0	1	1	0	\triangle	22
b)	1	1	0	1	0	\triangle	26
c)	1	0	1	0	0	\triangle	24
d)		1	1	0	0	\triangle	12

14. 1 0 0 0 1, 1 0 1 — 1 0 1 0, 0 1 ergibt

a)	1	1	1,	1	1	1	
b)	0	0	1	1	1,	0	1 1 0 \(\text{\tinit}}\exitingset{\text{\tiliex{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi{\text{\texi{\text{\text{\text{\text{\text{\text{\text{\texi{\text{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}}\tint{\text{\text{\text{\text{\text{\ti}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
c)	1	1	1,	0	1	1	
d)	1	0	1	1,	0	1	1 △ 11,375

fernmeldelehrling.de

zu 10.

0	1	3	6	13	27	54	109	218	437	875
1	1	0	1	1	0	1	0	1	1	
0,87	-5	1,75	→ 1,5	1						
		1	1	1						

875,875 🖴 1 1 0 1 1 0 1 1, 1 1 1

zu 11.

zu 12.

zu 13.

zu 14.

15. 1 0 1 1 · 1 1 0 1 ergibt

	a)	1	0	0	1	1	1	1		\triangle	79
	b)	1	0	0	0	1	1	1	1	\triangle	143
	c)	1	1	0	0	0	1	1	1	\triangle	199
	d)	1	0	1	1	0	0	1	1	\triangle	179

16. 1 0 1, 1 0 1 · 1 1, 1 1 ergibt

	a)	1	0	1	0	1,	0	0	0	1 1 \(\text{\rightarrow}\) 21,09375
	b)	1	0	1	0	1,	0	1	1	△ 21,375
	c)	1	0	0	1	1,	0	1	1	△ 19,375
	d)	1	0	0	1	1,	0	0	0	1 1 \(\text{\tin}\text{\tetx{\text{\te}\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\texi}\text{\texi}\text{\text{\text{\texi}\texitt{\text{\text{\text{\tet{\text{\text{\texi}\text{\text{\texi}\text{\texi}\text{\te

17. 1 1 0 1 1 1 0 1 : 1 0 0 0 1 ergibt

	a)					
	b)	1	1	0	0	
	c)	1	0	1	1	
	d)	1	1	0	1	

18. 1 0 1 1 0 1 : 1 0 0 0 0 ergibt

a)	1,	1	1	0	1	
b)	1	0,	1	1	0	
c)	0	1,	1	0	1	
d)	1	0,	1	0	0	

zu 15.																		
	1	0	1	1		1	- 65	1	0	1			11		13			
	-	U	1	0	1 0	0 0			1	_				143	E-D			
		1	0	0 1	1	1												
	1	0	0	0	1	1		1	1									
zu 16.																		
	1	0	1,	1	0	1		•	1	1,	1	1			5,6	25	• 3,7	5
					4	1		0				1				21	,0937	5
				1	0	0		1	0	1	1							
			1	0	1	1		0	1									
	_	1	0	1	0	1	,	0	0	0	1	1						
zu 17.																		
		1 0 0 0			1 0	1		1	0 0	0	1 :	= 1	1	0	1_			
		1 0								22	:1	17	=	: 13	3			
					0 0													
			_		0 0	0												
zu 18.																		
		0 1				1	0	0	0 0) =	1_	0,	1 1	0	1			
	0.000				1 0 0 0				4	5 :	16		2,	812	5			
					1 0 0 0													
			-		1 0													
								0										
									21	1.	4							

19.	Die Komp	plementbildung dient
	□ b) □ c).	zur Umkehrung aller Stellen einer Dualzahl zur Rückführung der Division auf eine mehrfache Subtraktion zur Rückführung der Addition auf eine Subtraktion zur Rückführung der Subtraktion auf eine Addition
20.	Das Kom man	plement einer fünfstelligen Dualzahl zu 10000 erhält
	□ b) □ c)	durch Umkehrung aller Stellen durch Umkehrung aller Stellen und Addition von 1 durch Umkehrung aller Stellen und Subtraktion von 1 durch Subtraktion der Dualzahl von 1 0 0 0 0 0
21.	Die höchs	ste fünfstellige Dualzahl entspricht
	□ a) □ b) □ c) □ d)	32 63
22.	Die Anza code betr	hl der möglichen Kombinationen bei einem fünfstelligen Binärägt
	□ a) □ b) □ c) □ d)	32 63 (1986) 1986
23.	Die Verw	rendung von gleichlangen Codezeichen hat den Vorteil
	□ a)	des im Mittel geringsten Aufwands an Bits beim Übertragen und Speichern
		eines geringen Empfängeraufwandes daß auf Pausen zwischen den Codezeichen verzichtet werden kann
	□ d)	daß zwischen den Codezeichen Pausen eingefügt werden müssen

— 15 **—**

zu 19.	and the second s	24.	Add	itive	Codes
	Mit Hilfe der Komplementbildung kann die Subtraktion auf eine Addition zurückgeführt werden. Falsch: Die Komplementbildung dient nicht zur Umkehrung aller Stellen einer Dualzahl. Die Umkehrung aller Stellen ist vielmehr eins von verschiedenen möglichen Verfahren, um bei Dualzahlen und einigen anderen Binärcodes das gewünschte Komplement zu bilden.	25.	Zu d	b) c) d) len a a) b) c)	eignen sich besonders gut zum Addieren sind Minimalcodes sind leicht lesbar haben einen festen Stellenwert dditiven Codes gehören der Graycode und der Dualcode der Aikencode und der Drei-Exzeßcode der 1-aus-10-Code und der Dualcode der Aikencode und der Biquinärcode
zu 20.	Falsch:				
	Durch Umkehrung aller Stellen einer fünfstelligen Dualzahl erhält man das Komplement zu 1 1 1 1 1, nicht zu 1 0 0 0 0 0. Da 1 0 0 0 0 0 = 1 1 1 1 1 + 1 ist, muß man nach der Um-	26.	Mini	a)	codes sind Dualcode, 2-aus-5-Code und Biquinärcode Aikencode, Drei-Exzeßcode und Graycode
	kehrung eine 1 addieren. Das Komplement ergibt sich auch durch normale Subtraktion der Dualzahl von 1 0 0 0 0.			c)	1-aus-10-Code und Dualcode 2 4 2 1-Codes, 1-aus-10-Code und Zählcode
zu 21.	the same to the same of the last territories. The	07	771	G 1	
	Die höchste fünfstellige Dualzahl ist 1 1 1 1 1 $ riangleq 31 = 2^5 - 1$	27.		a) b)	wenn mit ihm mehr Informationen dargestellt werden als Kombinationen möglich sind wenn nicht alle möglichen Kombinationen mit Nachrichten belegt sind wenn er mehr Bits je Zeichen enthält als ein entsprechender Minimalcode
zu 22.				d)	wenn auch die Pseudotetraden ausgenutzt werden
□ ⊠ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	Bei einem n-stelligen Binärcode lassen sich 2^n verschiedene Kombinationen bilden, bei einem fünfstelligen also $2^5=32$. Zu der in Frage 21 genannten Höchstzahl 31 kommt noch die Kombination 0 0 0 0 hinzu.	28.	Von	den a) b) c)	vier in den Antworten genannten Codes ist am redundantesten der 2-aus-5-Code der 3-aus-7-Code der 1-aus-10-Code der Biquinärcode
	Wenn alle Codezeichen gleichlang sind, wenn der Empfänger also			uj	dei biquinarcode
	keine ungleich langen Zeichen zu unterscheiden braucht, kann er einfacher aufgebaut sein. Bei gleichlangen Codezeichen kann auf eine Pause zwischen den Zeichen verzichtet werden, weil der Empfänger dann weiß, daß nach einer bestimmten Anzahl von Bits ein Zeichen beendet ist und mit dem nächsten Bit das neue	29.		a) b)	bertragung von Codezeichen entsteht ein Fehler, wenn ein Bit durch Störungen seinen Zustand ändert wenn der Sender einer Information ein falsches Codezeichen zuordnet wenn der Empfänger eine 0 als 1 auswertet und umgekehrt
	Zeichen beginnt.			d)	wenn durch atmosphärische Störungen aus einer 0 eine 1 wird

zu 24.	Merke:	30.	Unte	er Hammingdistanz ist zu verstehen
	Additive Codes haben einen festen Stellenwert. Die codierte Dezimalziffer ist die Summe der Stellenwerte, deren Elemente im Zustand 1 sind. Additive Codes sind daher leicht lesbar.			 a) die Differenz zwischen der höchsten und niedrigsten vom Code dargestellten Dezimalziffer b) die kleinste Anzahl von Bits, deren Zustand geändert werden muß, damit aus einem ausgenutzten Zeichen ein neues ausgenutztes Zeichen entsteht
zu 25.				c) die Differenz aus der Zahl der verwendeten Bits je Zeichen und der mindestens erforderlichen Bits je Zeichen
	Von den in den Antworten genannten Codes sind nur der Gray- code und der Drei-Exzeßcode nicht additiv. Der Dualcode hat die Wertigkeiten 8, 4, 2, 1, der Aikencode 2, 4, 2, 1, der 1-aus-10-			d) die Anzahl der Pseudotetraden
\boxtimes	Code 9, 8, 7, , 2, 1, 0, der Biquinärcode 5, 0, 4, 3, 2, 1, 0.	31.	Ein I	Fehlererkennungscode muß eine Hammingsdistanz haben von min- ens
zu 26.	Merke:			a) 1
	Minimalcodes enthalten nur soviel Bits je Zeichen, wie zur Dar- stellung aller Nachrichten gerade erforderlich sind.			b) 2 c) 3
	Der Aikencode, der Drei-Exzeßcode und der Graycode enthalten vier Bits je Zeichen; mit weniger lassen sich die zehn Dezimal- ziffern bei gleichlangen Zeichen nicht darstellen.			d) 4
zu 27.	Merke:			
	Redundanz bedeutet Weitschweifigkeit. Bei redundanten Codes sind demnach nicht alle Kombinationen ausgenutzt, oder anders ausgedrückt, sie enthalten mehr Bits je Zeichen als erforderlich.	32.		Fehlererkennung wird meistens anstelle eines Prüfzeichens je henblock ein Prüfbit je Zeichen verwendet,
\boxtimes	makes the day become maked, as held reported the of the			
				 a) weil bei einem Fehler und Prüfzeichen je Zeichenblock der gesamte Zeichenblock wiederholt werden muß b) weil die Anzahl der zur Übertragung erforderlichen Bits immer
zu 28.	and agreement of the Commission of the Commissio			kleiner ist
	Ein Code ist um so redundanter, je mehr Bits pro Zeichen er enthält als der entsprechende Minimalcode. Der 1-aus-10-Code benutzt zur Darstellung der zehn Dezimalziffern zehn Bits je Zeichen, wo nur vier erforderlich sind.	-		c) weil das Verfahren immer sicherer ist d) weil der Aufwand im Empfänger kleiner ist
zu 29.	TI TI II Viet and another the real day Information graphs and			
\boxtimes	Ein Fehler liegt vor, wenn die von der Informationsquelle aus- gehende Nachricht nicht richtig beim Empfänger ankommt. Das ist	33.		erkorrekturcodes erfordern
	bei allen vier Antworten der Fall.			 a) den gleichen Aufwand wie Fehlererkennungscodes b) mehr Aufwand als Fehlererkennungscodes c) weniger Aufwand als Fehlererkennungscodes

zu 30.		34. D	er d	iale BCD-Code
	Mit Hammingdistanz bezeichnet man die Zahl der Elemente, deren Zustand geändert werden muß, damit ein neues ausgenutz- tes Zeichen entsteht.			 a) benötigt bei der Addition keinerlei Korrektur b) ist fehlererkennend c) benötigt ein besonderes Schaltnetz für die Bildung des Neuner- komplements
	Falsch: Die Differenz aus der Zahl der verwendeten Bits je Zeichen und der mindestens erforderlichen Bits je Zeichen ist nicht die Hammingdistanz sondern die Redundanz.			d) bringt bei einer Summe, die größer oder gleich 10 ist, immer einen Ubertrag
zu 31.		d	eim uale veil	Aikencode und Drei-Exzeßcode erhält man im Gegensatz zum n BCD-Code das Neunerkomplement durch Negation aller Stellen,
	Wenn die Hammingdistanz nur 1 beträgt, entsteht bei Verfälschung eines Bits ein anderes ausgenutztes Zeichen. Der Empfänger kann dann nicht entscheiden, ob das empfangene Zeichen gesendet wurde oder durch einen Fehler entstanden ist. Bei einer Hammingdistanz von 2 entsteht bei Verfälschung eines Bits ein nicht ausgenutztes Zeichen, woran der Empfänger einen Fehler erkennen kann. Bei einer Hammingdistanz von 3 oder 4 ist die Fehlererkennung natürlich besser, aber zur Erkennung nur eines fehlerhaften Bits pro Zeichen ist diese Distanz nicht unbedingt erforderlich.			 a) die Pseudotetraden und die Dezimalziffern symmetrisch zur Mitte der 16 möglichen Kombinationen liegen b) Aikencode und Drei-Exzeßcode nicht additiv sind c) schon bei 10 ein Übertrag entsteht
zu 32.				
	Bei einem Prüfzeichen je Zeichenblock muß bei einem Fehler der gesamte Zeichenblock wiederholt werden. Für den Empfänger ist es einfacher, jedes Zeichen, also jede Zeile, auf eine Gesetzmäßigkeit zu überprüfen, als jeden Zeichenblock, also jede Spalte; dazu wäre die Speicherung aller Zeichen eines Zeichenblocks erforderlich. Außerdem ist zu berücksichtigen, daß mit dem Umfang der überwachten Bits auch die Wahrscheinlichkeit wächst, daß komplementäre, und damit meist nicht mehr erkennbare Fehler auf-	36. E	Die K	orrekturvorschrift bei der Addition ist abhängig
zu 33.	Merke:			 a) beim Aikencode nur von der Entstehung eines Übertrags, beim Drei-Exzeßcode von der Entstehung einer Pseudotetrade b) bei beiden Codes nur von der Entstehung eines Übertrags c) beim Drei-Exzeßcode von der Entstehung eines Übertrags,
	Da zur Fehlerkorrektur neben der Fehlererkennung auch noch die Lokalisierung erforderlich ist, sind Fehlerkorrekturcodes auf- wendiger als Fehlererkennungscodes.			beim Aikencode von der Entstehung eines Übertrags und einer Pseudotetrade d) bei beiden Codes nur von der Entstehung einer Pseudotetrade

zu 34.	10.1 Dec 20.10 (0.	37. Bei einschrittigen Codes
	Der duale BCD-Code ist zum Rechnen ungünstig. Entsteht als Ergebnis einer Addition eine Pseudotetrade oder ein Ubertrag, so ist eine Korrektur erforderlich (+6). Ein Ubertrag entsteht erst bei 16 und nicht schon bei 10. Das Neunerkomplement läßt sich nicht einfach durch Negation aller Stellen bilden. Als Minimalcode kann der duale BCD-Code nicht fehlererkennend sein.	 a) können nur zwei Informationen dargestellt werden b) ändert beim Übertrag von einer Dezimalziffer zur nächsten nur ein Bit seinen Zustand c) bieten sich Vorteile bei der Längen- und Winkelabtastung d) ist für jedes ausgenutzte Zeichen die Zahl der Bits im Zustand 1 ungerade
zu 35.	migrafyan manyifedin afpadigamianad man yigangamis yanab "d offi attingali abada attambigasahariani nah atta2-5530 manufa	38. Der 2-aus-5-Code □ a) ist bei nur einem Bit je Zeichen Mehraufwand fehlerkennend □ b) erkennt auch zwei komplementäre Fehler
⊠ □	Dualer Aiken- Drei- BCD-Code code Exzeßcode	 c) ist bei allen Kombinationen additiv d) ermöglicht die Bildung des Neunerkomplements durch Negation aller Bits
	0 0 0 0 0 0 — Durch Negation aller 0 0 0 1 1 1 — Stellen wird beim reinen Dualcode das Komnen Dualcode das Komnen Dualcode das Komplement zu 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	39. Die Anzahl der Elemente je Zeichen beträgt im Biquinärcode a) 2 b) 5 c) 6 d) 7 40. Der 1-aus-10-Code
zu 36.	1 1 0 1 — 7 — tion aller Stellen bilden 1 1 1 0 — 8 — (vgl. hierzu nebenste- 1 1 1 1 — 9 — hende Tabelle).	 a) erfordert nur geringen Aufwand für die Codierung und Decodierung b) ist additiv und fehlererkennend c) ist fehlererkennend auch für mehrere gleichsinnige Fehler bei sehr hoher Redundanz d) ist einschrittig
	Beim Drei-Exzeßcode muß die Dualzahl 0 0 1 1 (3) subtrahiert werden, wenn kein Übertrag, und sie muß addiert werden, wenn ein Übertrag entsteht. Ergibt sich beim Aikencode eine Pseudotetrade ohne Übertrag, so wird die Dualzahl 0 1 1 0 (6) addiert, bei einer Pseudotetrade mit Übertrag wird sie subtrahiert.	41. Ein Code, bei dem die Zahl der Bits im Zustand 1 die codierte Dezimalziffer angibt, ist der □ a) 1-aus-10-Code □ b) Zählcode □ c) 3-aus-7-Code □ d) n-aus-4-Code

zu 37.	milet market and the contract of the contract	42. Nicht eindeutig umkehrbar ist
	Dadurch, daß beim Übergang von einer Dezimalziffer zur nächst höheren nur ein Bit seinen Zustand ändert, können bei der Längen- und Winkelabtastung an den Übergängen von einer Kombination zur nächsten keine kurzzeitigen falschen Kombinationen ent- stehen.	 □ a) das Morsealphabet □ b) das Fernschreibalphabet (CCITT Nr. 2) □ c) der 3-aus-7-Code (CCITT Nr. 3) □ d) der Graycode
zu 38.	Distribution of the second	
	Der 2-aus-5-Code ist wegen der in der Bezeichnung des Codes schon angegebenen Gesetzmäßigkeit fehlererkennend. Zwei kom- plementäre, also gegensinnige Fehler (aus einer 1 wird eine 0 und an anderer Stelle aus einer 0 eine 1) können nicht erkannt werden, weil dann ein anderes ausgenutztes Zeichen entsteht. Bei der	 43. Der 3-aus-7-Code (CCITT Nr. 3) hat gegenüber dem Fernschreibalphabet (CCITT Nr. 2) den Vorteil, daß er □ a) fehlererkennend ist □ b) additiv ist □ c) eine kleinere Redundanz hat
	Dezimalziffer 0 ist der 2-aus-5-Code nicht additiv. Durch Negation aller Elemente entsteht ein 3-aus-5-Code.	d) ein Minimalcode ist
zu 39.	And the second section of the second section of the	44. Eine Schaltvariable ist gekennzeichnet
	Der Biquinärcode ist siebenstellig. Die sieben Stellen haben die Wertigkeiten 5, 0, 4, 3, 2, 1, 0.	 a) durch die endliche Anzahl der Zustände, die sie annehmen kann b) durch ihr periodisches Auftreten c) dadurch, daß sie nur die Werte 0 und 1 annehmen kann d) durch eine konstante Spannung
zu 40.	The state of the s	45. Bei einem Schaltnetz ist der Zustand am Ausgang abhängig
	Durch die Verwendung von 10 Bits je Zeichen ergibt sich bei hoher Redundanz ein sehr einfacher Aufbau des Codes. Der Code ist deshalb additiv und fehlererkennend auch für mehrere gleichsinnige Fehler; er erfordert nur geringen Aufwand für die Codierung und Decodierung.	 a) nur vom momentanen Eingangszustand b) vom momentanen und vom vorhergehenden Eingangszustand c) vom momentanen Eingangszustand und vom vorhergehenden inneren Zustand des Schaltnetzes d) vom momentanen und folgenden Eingangszustand
		46. Bei einem Schaltwerk ist der Zustand am Ausgang abhängig
zu 41.	Der Zählcode hat seinen Namen aufgrund der Eigenschaft, daß nur die Anzahl der Bits im Zustand 1 je Zeichen gezählt zu werden braucht, um die zugehörige Dezimalziffer zu erhalten.	 a) nur vom momentanen Eingangszustand b) vom momentanen und vom vorhergehenden Eingangszustand c) vom momentanen Eingangszustand und vom vorhergehenden inneren Zustand des Schaltwerkes d) vom momentanen und folgenden Eingangszustand
	- 24 -	— 25 —

	A. A. Bass a Michigan Intel [®] 1000	47. Ein Schaltnetz enthält
zu 42.	Merke:	
	Nicht eindeutig umkehrbar ist ein Code, wenn ein und dasselbe	□ a) nur Speicher□ b) nur Verknüpfungsglieder
\boxtimes		c) Speicher und Verknüpfungsglieder
	muß dann vorher gekennzeichnet werden, welche Bedeutung ge-	d) nur elektromechanische Bauelemente
	meint ist.	
	Bei den CCITT-Alphabeten Nr. 2 und Nr. 3 wird die doppelte Ausnutzung der Codezeichen durch die Verwendung der Ziffern- und	48. Ein Relais mit Haltestromkreis kann Bestandteil sein
	Buchstabentaste ermöglicht.	a) eines Schaltwerkes
	Buchstabentaste ermognori.	□ b) eines Schaltnetzes
		 c) sowohl eines Schaltwerkes als auch eines Schaltnetzes
	and the latest and the second of the contract of the second of the secon	□ d) weder eines Schaltnetzes noch eines Schaltwerkes
10	Total Control of the	
zu 43.	des Fornachroibe	49. Zum Aufbau jedes möglichen Schaltnetzes mit Relais
	Der 3-aus-7-Code benötigt 7 Bits je Zeichen, das Fernschreib- alphabet nur 5. Die sich durch die 2 zusätzlichen Bits ergebende	a) reicht die Reihenschaltung von Arbeitskontakten (Schließern)
	Redundanz wird zur Fehlererkennung verwendet.	aus allow of the first that the second of th
	Redundanz wird zur Femererkeimung verweiten	□ b) genügt die Parallelschaltung von Ruhekontakten (Offnern)
		c) sind Reihen- und Parallelschaltung von Arbeits- und Ruhe-
		kontakten erforderlich
		□ d) genügt die Parallelschaltung von Arbeitskontakten oder die
zu 44.	THE PROPERTY OF STREET	Reihenschaltung von Ruhekontakten
\boxtimes	Eine Schaltvariable ist eine Veränderliche, die nur eine endliche Zahl verschiedener Zustände annehmen kann. Antwort c) kenn-	50. Die Reihenschaltung von Arbeitskontakten (Schließern) entspricht
	zeichnet den speziellen Fall einer binären Schaltvariablen.	□ a) einer UND-Verknüpfung
	at meaning thin danew old are adouble and about	b) einer ODER-Verknüpfung
	processes of the latter of the Special Control of the latter of the latt	c) einer NAND-Verknüpfung
		d) einer NOR-Verknüpfung
		u) cheritor vermaptang
zu 45.	Merke:	min me- tini grayin A jas lifander pagisliatini / 45/17 piate hul
	Ein Schaltnetz ist definiert als eine digitale Schaltung, deren Aus-	The part of the pa
\boxtimes	gangszustand nur vom momentanen Eingangszustand abhängt.	54. Das nebenstehende Impulsdiagramm
	gangszustand nur vom momentanen 2003	kennzeichnet eine
	and the same and t	kemizeidniet ente
	the second with metal than provide an experience of the later of the l	a) UND-Verknüpfung
	INTERIOR PROPERTY AND ADDRESS OF THE PARTY O	a) UND-Verknüpfung b) ODER-Verknüpfung NAND-Verknüpfung
	Markot is recorded and topically subject deposits being the state of	□ d) NOR-Verknüpfung 0 → 0 → 0 → 0 → 0 → 0 → 0 → 0 → 0 → 0
zu 46.	Merke:	
	Bei einem Schaltwerk ist allgemein der Zustand am Ausgang	
	- Law on Lingangeriistanii diitti vulii vuliici gonon	
\boxtimes	den inneren Zustand abhängig (vgl. z. B. Wähler oder Zähler).	z ~ T
CONTRACT OF THE PARTY OF THE PA		

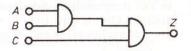
zu 47.	and the second s	52. Das nebenstehende Impulsdiagramm kennzeichnet eine
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	Ein Schaltnetz enthält nur Verknüpfungsglieder. Würde es auch Speicher enthalten, so wäre der Ausgangszustand auch vom vorher gespeicherten Zustand abhängig.	a) UND-Verknüpfung b) ODER-Verknüpfung c) NAND-Verknüpfung d) NOR-Verknüpfung
	Ein Relais mit Haltestromkreis hat Speicherwirkung. Es kann daher nur Bestandteil eines Schaltwerkes sein, nicht eines Schalt- netzes.	z° , 1 , 1
zu 49.		
	Zur Realisierung aller Schaltfunktionen reichen weder nur Arbeitskontakte noch nur Ruhekontakte, weder nur die Reihen-	53. Nebenstehendes Schaltbild erfüllt eine
	schaltung noch nur die Parallelschaltung aus.	□ a) UND-Funktion
		□ c) NAND-Funktion □ d) NOR-Funktion □ d
zu 50.		
	Bei einer Reihenschaltung von Arbeitskontakten ist der Strom- kreis nur geschlossen, liegt also am Ausgang nur der Zustand 1, wenn alle Kontakte geschlossen sind.	
	Merke:	54. Von den dargestellten Impulsdiagrammen kennzeichnen
	Bei einer UND-Verknüpfung entsteht am Ausgang nur dann der Zustand 1, wenn an allen Eingängen der Zustand 1 anliegt.	□ a) beide eine UND-Funktion al o
		□ b) a) eine NICHT-Funktion, A
zu 51.	AND RESIDENCE	b) eine Ja-Funktion □ c) beide eine ODER-Funktion
	Da beide Eingänge A und B in dem dargestellten Diagramm gleichzeitig den Zustand 0 und 1 haben, gilt das dargestellte Diagramm sowohl für eine UND- als auch für eine ODER-Verknüpfung.	d) a) eine Ja-Funktion, b) eine NICHT-Funktion
		z°

	En
711	7/

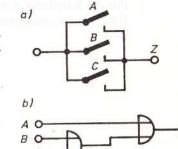
□ In der Abbildung ist der Ausgang Z immer dann im Zustand 1,
 □ wenn Eingang A oder Eingang B oder beide im Zustand 1 sind.
 □ Der Ausgang Z ist nur dann 0, wenn beide Eingänge gleichzeitig
 □ im Zustand 0 sind. Es handelt sich also um eine ODER-Funktion.

zu 53.

 \boxtimes


Am Ausgang der dargestellten Schaltung liegt Spannung, wenn Relais A **oder** Relais B unter Strom sind; es handelt sich also um eine ODER-Verknüpfung.

zu 54.

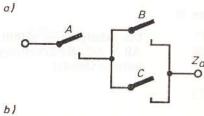

☐ In der Abbildung a) sind Eingang und Ausgang gleich, es handelt sich also um eine Ja-Funktion; in der Abbildung b) ist der Ausgang im Zustand 0, solange der Eingang im Zustand 1 ist und umgekehrt. Abbildung b) kennzeichnet das Impulsdiagramm einer NICHT-Funktion.

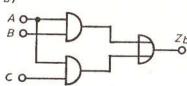
- 55. Welche der folgenden Gleichungen sind richtig?
 - \Box a) $0 \cdot 0 = 1$
 - \Box b) $0 \lor 1 = 1$ c) $0 \cdot 1 = 1$
 - \Box c) $0 \cdot 1 = 1$ \Box d) $1 \cdot 1 = 1$
- 56. Welche der folgenden Gleichungen sind richtig?
 - \Box a) $\overline{0} = 1$

 - \Box c) 1 \vee 0 = 1
 - \Box d) $1 \lor 1 = 1$
- 57. Der Ausgang Z der nebenstehenden Schaltung erfüllt die Funktion
 - \Box a) $Z = AB \lor C$
 - b) Z = (AC) B
 - \Box c) Z = ABC
 - \Box d) Z = (AB) C

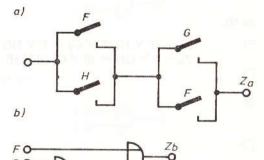
- 58. Von den nebenstehenden Schaltungen
 - □ a) erfüllen beide die gleiche Schaltfunktion
 - b) ist bei Schaltung b) der Ausgang Z immer im entgegengesetzten Zustand wie bei Schaltung a)
 - c) ist a) eine UND-, b) eine ODER-Funktion
 - d) sind beide ODER-Funktionen

zu 55.


- Bei einer ODER-Funktion genügt an einem Eingang eine 1, damit am Ausgang eine 1 entsteht; bei einer UND-Funktion ist an allen Eingängen der Zustand 1 erforderlich.
- X
- zu 56. Falsch:
- Nicht 1 (1) ist Null und nicht 1. X
- X
- zu 57.
- In der dargestellten Schaltung ist Z = (AB) C. Nach dem asso-X ziativen Gesetz gilt: (AB) C = (AC) B = A (BC) = ABC, so daß die Antworten b), c) und d) richtig sind.
- X


zu 58.

- \boxtimes Für die Schaltung a) gilt: $Z = A \lor B \lor C$, für b): $Z = A \lor (B \lor C)$. Nach dem assoziativen Gesetz sind beide Aussagen gleichwertig.

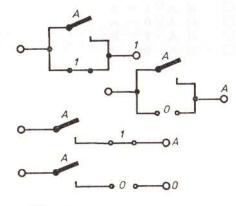

— 32 —

- 59. Für die nebenstehenden Schaltungen gilt
 - a) $Z_a = \bar{Z}_b$
 - b) $Z_a = Z_b$
 - c) $Z_a = AB \lor AC;$ $Z_b = A (B \lor C)$
 - d) $Z_a = A \lor BC;$ $Z_b = AB \lor AC$

- 60. In den dargestellten Schaltungen ist
 - a) $Z_a = FH \vee FG$; $Z_b = FH \vee FG$
 - b) $Z_a = F (H \vee G);$
 - $Z_b = F (H \vee G)$ c) $Z_a = F \vee HG$; $Z_b = (F \vee G)$
 - $(F \lor H)$ d) $Z_a = (F \vee H)$
 - $(G \vee F);$ $Z_b = F (G \lor H)$

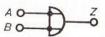
- 61. Welche der folgenden Gleichungen ist richtig?
 - a) $A \lor 1 = A$
 - b) $A \lor 0 = A$
 - c) $A \cdot 1 = A$
 - d) $A \cdot 0 = A$

zu 59.

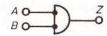

- Die Schaltung a) erfüllt die Schaltfunktion $Z_a = A$ (B \vee C) = AB \vee AC, die Schaltung b): $Z_b = AB \vee AC = A$ (B \vee C) (distri-
- butives Gesetz). \boxtimes

zu 60.

- $Z_a = (F \lor H) (F \lor G) = F \lor HG$ $Z_b = F \vee GH = (F \vee G) (F \vee H)$
- X


zu 61.

- $A \lor 1 = 1$
- $A \lor 0 = A$ \boxtimes
- \boxtimes $A \cdot 1 = A$ $A \cdot 0 = 0$



- 62. Nebenstehende Schaltung erfüllt
 - a) die UND-Funktion
 - b) die ODER-Funktion c). die NOR-Funktion

 - d) die NAND-Funktion

- 63. Für nebenstehende Schaltung gilt
 - a) $Z = \overline{A \vee B}$
 - b) $Z = \overrightarrow{AB}$ c) $Z = \overline{A} \vee \overline{B}$
 - d) $Z = \overline{A} \overline{B}$

- 64. Für nebenstehende Schaltung gilt
 - a) $Z = A \lor B$
 - b) Z = AB
 - c) $Z = \overline{A \vee B}$
 - d) $Z = \overline{A} \vee \overline{B}$

- 65. Welche der folgenden Gleichungen ist richtig?
 - a) $AB \lor C = (AB) \lor C$
 - b) A (B \vee C) = AB \vee C
 - c) A (B \vee C) = AB \vee AC
 - d) $A \lor BC = (A \lor B) C$
- 66. Ein Minterm der vier Variablen A, B, C und D ist
 - a) ABCD
 - b) A V B V C V D
 - c) ABCD
 - d) A B C D

zu 62.		67. Ein Minterm von fünf Variablen hat
	Bei der dargestellten Verknüpfung gilt für Z: $Z = \overline{A} \vee \overline{B}$. Nach den de Morganschen Gesetzen gilt: $\overline{A} \vee \overline{B} = \overline{AB}$. Es handelt sich also um eine NAND-Funktion. Merke: Eine an allen Eingängen negierte ODER-Funktion erfüllt die gleiche Schaltfunktion wie eine am Ausgang negierte UND-Funktion.	 a) bei allen möglichen Eingangskombinationen den Wert 1 b) bei der einen Hälfte der Eingangskombinationen den Wert 1, bei der anderen Hälfte den Wert 0 c) bei 30 Eingangskombinationen den Wert 0, bei einer den Wert 1 d) bei 31 Eingangskombinationen den Wert 0, bei einer den Wert 1 e) bei 31 Eingangskombinationen den Wert 1, bei einer den Wert 0
zu 63.		68. Für die Variablen U, V, W, X und Y lautet der Minterm, der bei der Eingangskombination 1 0 1 0 1 im Zustand 1 ist,
	Die dargestellte Verknüpfung ist eine UND-Funktion mit negierten Eingängen: $Z=\overline{A}$ \overline{B} . Nach den de Morganschen Gesetzen ist \overline{A} $\overline{B}=\overline{A}$ \overline{V} \overline{B} .	□ a) U ∨ ∇ ∨ W ∨ X ∨ Y □ b) Ū ∨ ₩ X ∇ □ c) U ∇ W X Y □ d) Ū ∨ V ∨ ₩ ∨ X ∨ ∇
zu 64.	Merke:	69. Die vollständige disjunktive Normalform für die neben- stehende Funktionstabelle lautet
	Eine an allen Eingängen und am Ausgang negierte ODER-Funktion entspricht einer UND-Funktion und umgekehrt. $Z=\overline{\overline{A}\ \lor\overline{\overline{B}}}=AB$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
zu 65.	Merke:	Total Control of the
	UND- und ODER-Funktionen sind gleichwertig. Um beim Schreiben der Funktionen Klammern zu sparen, hat man willkürlich Prioritäten festgelegt: NICHT-Funktion vor UND-Funktion vor ODER-Funktion. Daher ist AB \vee C = (AB) \vee C, aber A (B \vee C) ist nicht gleich AB \vee C sondern gleich AB \vee AC.	70. Ein Maxterm der vier Variablen A, B, C und D ist a) ABCD b) Ā V B V Č V Ď c) A V B V C V D d) ĀBČĎ
		71. Ein Maxterm von 6 Variablen hat nur bei
zu 66.	Merke: Ein Minterm ist eine UND-Verknüpfung, die alle Variablen einmal enthält, wobei diese negiert oder nicht negiert auftreten können.	 a) 31 Eingangskombinationen den Wert 0 b) einer Eingangskombination den Wert 0 c) einer Eingangskombination den Wert 1 d) 63 Eingangskombinationen den Wert 1 e) 31 Eingangskombinationen den Wert 1

— 36 **—**

zu 67.	Merke:
	Ein Minterm hat immer nur für eine bestimmte Eingangskombi- nation den Wert 1.
	Bei fünf Variablen gibt es 32 verschiedene Minterme und Eingangskombinationen. Bei 31 Eingangskombinationen hat ein Minterm den Zustand 0
	term den Zustand 0.
zu 68.	Merke:
	Den Minterm zu einer Eingangskombination erhält man, wenn in der UND-Verknüpfung alle Variablen, die im Zustand 0 sind, negiert werden.
zu 69.	Merke:
	Die vollständige disjunktive Normalform ist die ODER-Verknüpfung aller Minterme derjenigen Eingangskombinationen, für die der Ausgang den Zustand 1 hat. Falsch:
	Die Antworten a) und d) geben zwar die Schaltfunktion von Trichtig an, sie sind aber nicht die vollständige disjunktive Normalform.
zu 70.	Merke:
	Ein Maxterm ist eine ODER-Verknüpfung, die alle Variablen einmal enthält, wobei sie negiert oder nicht negiert auftreten können.
zu 71.	Merke:
	Ein Maxterm hat nur für eine bestimmte Eingangskombination den Wert 0.
	Bei 6 Variablen sind 64 Eingangskombinationen und damit Max- terme möglich; demnach hat ein Maxterm von 6 Variablen bei 63 Eingangskombinationen den Wert 1.

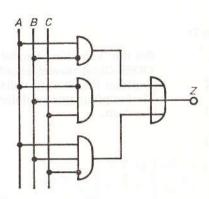
72. Für die Variablen D, E, F, G, H und I lautet ein Maxterm, der bei der Eingangskombination 1 0 1 0 1 1 im Zustand 1 ist,

a)	D	٧	Ē	٧	F	V	$\bar{\mathbf{G}}$	٧	H	V	
b) .	D	V	E	V	F	V	G	V	H	V	
-1	5	11	豆	11	T	V	7	11	TT	11	

d) D V E V F V G V H V I e) D V E V F V G V H V I

73. Die vollständige konjunktive Normalform für die nebenstehende Funktionstabelle lautet

	a)	W	200	$(U \lor V) (\overline{U} \lor \overline{V})$	U	V	VV	
	b)	W	100	ŪV∨UŪ	0	0	0	
	c)	W	==	$(\overline{U} \lor V) (U \lor \overline{V})$	0	1	1	
	d)	W	223	UV V ŪV	1	0	1	
	100				1	1	0	


74. Nebenstehendes Schaltnetz entspricht der Darstellung

a)	einer vollständigen dis-
	junktiven Normalform
	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

b) einer disjunktiven Normalform

c) einer vollständigen konjunktiven Normalform

d) einer konjunktiven Normalform

75. Das Schaltnetz aus Frage 74 erfüllt die Schaltfunktion

	a)	Z	=	AB	٧	ABC	٧	ĀĒC
--	----	---	---	----	---	-----	---	-----

$$\Box \qquad b) \ Z = (A \lor \overline{B}) \ (\overline{A} \lor B \lor C) \ (A \lor B \lor \overline{C})$$

$$\Box$$
 c) $Z = A\overline{B} \vee \overline{A}BC \vee AB\overline{C}$

$$\Box \quad d) \ Z = (\overline{A} \lor B) \ (A \lor \overline{B} \lor \overline{C}) \ (\overline{A} \lor \overline{B} \lor C)$$

zu 72.	Merke:		ir welche Eingangskombinationen (0 . unktionstabelle mit der für das Schaltne					ende
	Den Maxterm, der bei einer gegebenen Eingangskombination im Zustand 0 ist, erhält man als ODER-Verknüpfung aller Variablen, von denen alle, die im Zustand 1 sind, negiert werden.		b) für die Kombinationen 0, 1, 2, 3 c) für die Kombinationen 2, 3, 5, 6	3, 4, und 5 6, 7, 8	l A	В	С	Z
zu 73.	Merke:			0 1 2 3	0 0 0 0	0 0 1	0 1 0 1	0 0 1 0
				4	1	9558	0	1
	Die vollständige konjunktive Normalform ist die UND-Verknüp- fung aller zu den Eingangskombinationen gehörenden Maxterme, bei denen der Ausgang den Zustand 0 hat.			5 6 7	1 1 1	1	1 0 1	1 1 0
	Falsch:							
	Die Antwort b) gibt auch eine richtige Schaltfunktion von W an; es handelt sich aber um die vollständige disjunktive Normalform.	99 37	on den folgenden Mintermen sind bena	achbart				
				achbart				
zu 74.			a) The dana The d					
	Boi dor Abbildung bandalt as aid un UND Clinta li "I		c) XŸZ und XŸZ					
	Bei der Abbildung handelt es sich um UND-Glieder, die über ein ODER-Glied zusammengefaßt sind, also um eine disjunktive Nor-		d) ABCD und ABCD					
\boxtimes	malform. Sie ist nicht vollständig, weil die oben dargestellte UND- Verknüpfung nur zwei der Variablen enthält, also keinen Minterm							
	darstellt.							
		78. A	n der nebenstehenden Karnaugh-	∖ AB	ĀB	ĀB	AB	401
			fel ist falsch, daß	CD	00			AB
					00	01	10	11
			nicht benachbart sind b) die erste und zweite Reihe	<u>CD</u> 00				
zu 75.		1111	nicht benachbart sind	C D 01				
	$Z = A\overline{B} \vee \overline{A}BC \vee AB\overline{C}$			0.0.10				
	(vgl. hierzu Frage 74)		nicht benachbart sind d) die zweite und dritte Spalte	C D 1 0				
			nicht benachbart sind	C D 11				
								_

79.

80.

zu 76. A B 0 \boxtimes 0 0 Nebenstehende Funktionstabelle gilt 3 für das Schaltnetz aus Frage 74. 1 4 zu 77. Merke: Zwei Minterme sind benachbart, wenn sie sich nur in einer \boxtimes Variablen unterscheiden. \boxtimes Die Minterme in den Antworten a) und d) unterscheiden sich in allen vier Variablen, die in den Antworten b) und c) jeweils nur in den ersten. zu 78. Merke: Das Prinzip des Karnaughdiagramms besteht darin, daß benach-barte Felder benachbarte Minterme oder Maxterme darstellen. Die zweite und dritte sowie die vierte und erste Spalte unterscheiden sich in beiden Variablen. Außerdem muß es am linken X Rand bei $C\overline{D}$ 10 und bei CD 11 heißen.

Nebe	enst	ehende Zusammenfassung ist	AB	AB	AB	AB	AR
	a)	CD	CD	00	01	11	10
П	b)	nicht möglich, weil nur 1, 2,4 oder 8 Variable zusam-	¯c ¯ 00	0	0	0	0
	c)	mengefaßt werden dürfen $\overline{\overline{c}} D O$	C D 01	1	1	1	0
	a)	CD ∨ AB	C D 11	0	0	0	0
			C D 10	0	0	0	0

Neb	enstehende Zusammenfassung et	KL	KL	KL	KL	KL
	a) L \bar{M} N	MN	00	01	11	10
	b) K M N	MN 00	0	0	0	0
	c) L M N d) K M N	M N 0 1	0	7	1)	0
		M N 1 1	0	0	0	0
		M N 10	0	0	0	0

a)	W	$\bar{\mathbf{x}}$	\bar{Y}	Z.
b)	\overline{W}	X	Y	Z
c)	\overline{W}	X	\overline{Y}	\bar{Z}
d)	\overline{W}	X	\bar{Y}	Z

81. In nebenstehender Karnaugh-

WX	\overline{wx}	WX	WX	wx
YZ	00	01	11	10
YZ OO	1	0	0	1
V Z 0 1	0	0	7	72
Y Z 11	0	0	1	1
Y Z 1 0	0	1	0	(1)

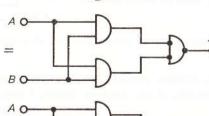
X

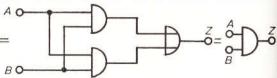
Zusammenfassungen sind nur dann möglich und führen zu Vereinfachungen, wenn 2, 4, 8 Variable zusammengefaßt werden.			asammenfassung 2 (Abb. zu Fra) WZ b) W \overline{X} Z c) W X \overline{Y} d) W \overline{X} Y	age 81) kenn:	zeichn	et		
			 a) X̄ Z̄ b) ist nicht möglich c) X ∨ Z 	age 81) laute	t			
Merke: Zur Ermittlung des schaltalgebraischen Ausdrucks für eine Zusammenfassung werden nur die in allen Feldern der Zusammenfassung in gleicher Form auftretenden Variablen zusammengefaßt. Bei der dargestellten Zusammenfassung sind beiden Feldern gemeinsam die Variablen L, M und N. K tritt sowohl negiert als auch nicht negiert auf und kann daher entfallen.	85, 1	mögli	ch: a) W \overline{X} \overline{Z} b) W \overline{X} c) W X Z d) \overline{X} \overline{Y} \overline{Z} astehende Zusammenfassung I a) \overline{N} \overline{Q} b) \overline{M} c) \overline{N}	autet MN Pa	MN 00	<u>₩</u> N		MN 10
			And the second second	PQ 01	1	0	0	1
Die Zusammenfassung 1 umfaßt nur ein Feld, sie enthält also alle				PQ 11	1	0	0	1
variablen in der für das Feld zugehörigen Form.	l ton 1		a) Implikation			0	0	1
	Merke: Zur Ermittlung des schaltalgebraischen Ausdrucks für eine Zusammenfassung werden nur die in allen Feldern der Zusammenfassung in gleicher Form auftretenden Variablen zusammengefaßt. Bei der dargestellten Zusammenfassung sind beiden Feldern gemeinsam die Variablen L, M und N. K tritt sowohl negiert als auch nicht negiert auf und kann daher entfallen.	Zusammenfassungen sind nur dann möglich und führen zu Vereinfachungen, wenn 2, 4, 8 Variable zusammengefaßt werden. 83. 84. Merke: Zur Ermittlung des schaltalgebraischen Ausdrucks für eine Zusammenfassung werden nur die in allen Feldern der Zusammenfassung in gleicher Form auftretenden Variablen zusammengefaßt. Bei der dargestellten Zusammenfassung sind beiden Feldern gemeinsam die Variablen L, M und N. K tritt sowohl negiert als auch nicht negiert auf und kann daher entfallen. 85. Die Zusammenfassung 1 umfaßt nur ein Feld, sie enthält also alle Variablen in der für das Feld zugehörigen Form.	Zusammenfassungen sind nur dann möglich und führen zu Vereinfachungen, wenn 2, 4, 8 Variable zusammengefaßt werden.	Zusammenfassungen sind nur dann möglich und führen zu Vereinfachungen, wenn 2, 4, 8 Variable zusammengefaßt werden. Auftralia Bei der dargestellten Zusammenfassung werden nur die in allen Feldern der Zusammenfassung in gleicher Form auftretenden Variablen zusammenfassung der variablen L, M und N. K tritt sowohl negiert als auch nicht negiert auf und kann daher entfallen. Bei Zusammenfassung 1 umfaßt nur ein Feld, sie enthält also alle Variablen in der für das Feld zugehörigen Form. AB ist der schaltalgebraische Ausdrucks für eine Zusammenfassung læder für das Feld zugehörigen Form.	A	a WZ b W \(\times Z \) c w \(\times Z \) d w \(\t	Zusammenfassungen sind nur dann möglich und führen zu Vereinfachungen, wenn 2, 4, 8 Variable zusammengefaßt werden. a WZ b W X Z c W X Y d W X Y d W X Y d W X Y d W X Y d W X Y d W X Z	Zusammenfassungen sind nur dann möglich und führen zu Vereinfachungen, wenn 2, 4, 8 Variable zusammengefaßt werden.

zu 82.		87. Nebenstehendes Schaltnetz erfüllt die Funktion einer
	vgl. hierzu die Antwort zu Frage 80	□ a) Inhibition □ b) Implikation □ c) Antivalenz □ d) Äquivalenz
zu 83.		88. \overline{A} B \vee A \overline{B} \vee A B stellt dar
	Die Zusammenfassung 3 ist nicht erlaubt, da sie drei Variable enthält.	□ a) eine ODER-Funktion □ b) eine Inhibition □ c) eine NAND-Funktion □ d) eine NOR-Funktion
zu 84.		
⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ≡ 85.	Alle vier Antworten sind richtig: a) kennzeichnet in der rechten Spalte das oberste und unterste Feld b) kennzeichnet die gesamte rechte Spalte c) kennzeichnet die beiden mittleren Felder der dritten Spalte d) kennzeichnet das rechte und linke Feld der obersten Reihe Die zusammengefaßten Felder haben nur N gemeinsam. Merke: Bei Zusammenfassungen von acht Feldern enthält der entsprechende Ausdruck drei Variable weniger als insgesamt Eingangs-	89. Nebenstehendes Schaltnetz erfüllt a) eine UND-Funktion b) eine ODER-Funktion c) eine NAND-Funktion d) eine NOR-Funktion B
zu 86.	variable vorhanden sind.	90. Nebenstehendes Schaltnetz erfüllt
	Eine an einem Eingang negierte UND-Funktion wird als Inhibition bezeichnet.	b) eine ODER-Funktion c) eine Inhibition d) eine Implikation

zu 87.

 \boxtimes Für die dargestellte Funktion gilt:

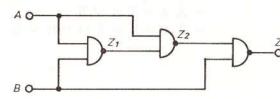

zu 88.


$$\overline{A} B \vee A \overline{B} \vee A B = \overline{A} B \vee A B \vee A \overline{B} \vee A B$$
 (AB \vee AB = AB)
 $\overline{B} (\overline{A} \vee A) \vee A (\overline{B} \vee B) = B \vee A = A \vee B$

Α	В	Z
0	0	0
0	1	1
1	0	1
1	1	1

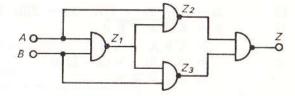
zu 89.

= AB

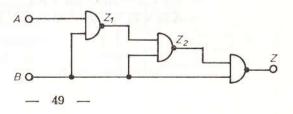


zu 90.			A	В	Z_1	Z
	$Z = \overline{\overline{ABB}}$	$= AB \vee \overline{B}$	0	0	1	1
	- 1100	$= AB \vee \overline{B} \cdot 1$	0	1	1	0
			1	0	1	1
		$= AB \vee \overline{B} (A \vee \overline{A})$	1	1	0	1
		$= AB \lor A\overline{B} \lor \overline{A}\overline{B}$				
		$= A (B \vee \overline{B}) \vee \overline{B} (A \vee \overline{A}) = A$	$\vee \overline{B}$			

11. Nebenstehendes Schaltnetz erfüllt eine


- a) Inhibition
- b) Negation
- c) Implikation
 - d) NAND-Funktion

92. Nebenstehendes Schaltnetz erfüllt eine


- a) Äquivalenz
- b) Implikation
- c) Inhibition

d) Antivalenz

113. Nebenstehendes Schaltnetz erfüllt eine

- a) NOR-Funktion
- b) Antivalenz
- c) NAND-Funktion
- d) Äquivalenz

zu 91.

$Z_1 =$	ĀB;	$Z_2 =$	$\overline{Z_1A}$;	Z =	$\overline{Z_2B}$
	-				

$$Z = \overline{\overline{A} \overline{B} A} B$$

Z = ABAB	A	В	$ Z_1 $	Z ₂	Z
$= \overline{A} \overline{B} A \vee \overline{B}$					
$= (\overline{A} \vee \overline{B}) A \vee \overline{B}$	0	1	1	1	0
$= \overline{A} A \vee \overline{B} A \vee \overline{B}$	1	0	1	1 1 0	1
$= \overline{B} \land \lor \overline{B} = \overline{B} (A \lor 1) = \overline{B}$	1	1	0	1	c

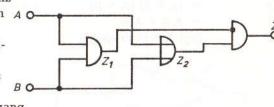
zu 92.

zu 93.

194. Eine am Ausgang negierte Äquivalenz ergibt

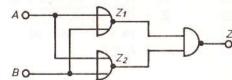
- a) eine Antivalenz
- b) eine Inhibition
- c) eine Negation
- d) eine Identität

95. Eine an einem Eingang negierte Äquivalenz ergibt


- a) eine Antivalenz
- b) eine Inhibition
- c) eine Negation
- d) eine Identität

96. Nebenstehendes Schaltnetz erfüllt

- a) eine Antivalenz
 - b) eine Inhibition A O-
- c) eine Identität


d) die Schaltfunktion eines Halbaddierers

> ohne Ubertragsausgang

117. Nebenstehendes Schaltnetz erfüllt

- a) eine UND-Funktion
- b) eine ODER-Funktion
- c) eine NAND-Funktion
 - d) eine NOR-Funktion

fernmeldelehrling.de

zu 94.

 \ddot{A} quivalenz: $Z = AB \lor \bar{A}\bar{B}$ \boxtimes

Wird der Ausgang negiert, so ergibt sich:

 $Z_1 = \overline{A} \overline{B} \overline{A} \overline{\overline{B}} = \overline{A} \overline{B} \overline{\overline{A}} \overline{\overline{B}} = (\overline{A} \vee \overline{B}) (A \vee B)$

 $= A \overline{A} \vee \overline{A} B \vee A \overline{B} \vee \overline{B} B = \overline{A} B \vee A \overline{B}$

A	В	Z	$Z_1 = Z$
0	0	1	0
0	1	0	1
1	0	0	1
1	1	1	0

zu 95.

Für die Äquivalenz gilt: $Z = AB \vee \overline{A}\overline{B}$. \boxtimes

Wird z. B. der Eingang A negiert, so ergibt sich:

 $Z_1 = \bar{A} B \vee \bar{A} \bar{B} = \bar{A} B \vee A \bar{B}$

zu 96.

 $Z = \overline{AB} (A \vee B)$ X

 $= (\bar{A} \vee \bar{B}) (A \vee B)$

 $= \bar{A} B \vee A \bar{B}$

(vgl. hierzu Frage 94) \boxtimes

A	В	$ Z_1 $	Z ₂	Z
0	0	0	0	0
0	1	0	1	1
1	0	0	1	1
1	1	1	1	0

Additionsregeln

0 + 0 = 0

0 + 1 = 1

0 = 1

+ 1 = 0 + 1 U

Z

0

zu 97.

 \boxtimes

П

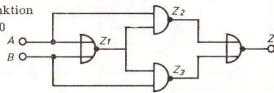
 $Z_1 = \overline{A \vee B}; \quad Z_2 = \overline{A \vee B}; \quad Z = \overline{Z_1 Z_2}$

 $Z = \overline{(A \lor B)} \overline{(A \lor B)}$

 $= (A \lor B) \lor (A \lor B)$

 $= A \lor B$

1 0 0 0 1 1

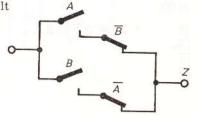

III. Nebenstehendes Schaltnetz erfüllt

a) eine Negation

b) die Konstante 1

c) die NAND-Funktion

d) die Konstante 0

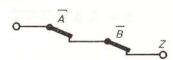

00. Das dargestellte Kontaktnetzwerk erfüllt

a) eine Antivalenz

b) eine Aquivalenz

c) eine Inhibition

d) eine Implikation

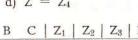

100. Die nebenstehende Kontaktfolge entspricht

a) einer NAND-Funktion

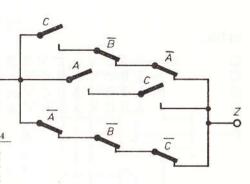
b) einer NOR-Funktion

c) einer UND-Funktion

d) einer ODER-Funktion



101. Für nebenstehendes Kontaktnetz gilt


a) $Z = Z_1$

b) $Z = Z_2$

c) $Z = Z_3$ d) $Z = Z_4$

A	B	C	Z_1	Z_2	Z_3	Z
0	0	0	1	1	1	1
0	0	1	0	1	1	1
0	1	0	1	0	0	1
0	1	1	0	1	0	0
1	0	0	0	0	0	0
1	0	1	1	0	1	1
1	1	0	0	0	0	0
1	1	1	1	1	1	1

zu 98.

$Z_1 =$	$\overline{A \vee B}$;	$Z_2 = \overline{Z_1}\overline{A};$	$Z_3 = \overline{Z_1B}$;	$Z = \overline{Z_2 \vee Z_3}$

$$\square \qquad \qquad Z = (\overline{\overline{A \vee B}) \ \overline{A} \vee (\overline{\overline{A \vee B}}) \ \overline{B}}$$

$$= \bar{A} \bar{B} A B = 0$$

A	В	Z_1	Z_2	Z ₃	Z
0	0	1	1	1	0
0	1	0	1	1	0
1	0	0	1	1	0
1	1	0	1	1	0

zu 99.

zu 100.

$$\square \qquad \qquad Z = \overline{A} \ \overline{B} = \overline{A \vee B}$$

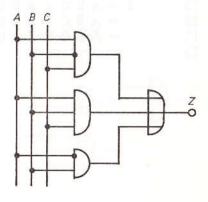
zu 101.

$$= \overline{A} \overline{B} \overline{C} \vee \overline{A} \overline{B} C \vee A C \cdot 1$$

$$= \bar{A} \bar{B} \bar{C} \vee \bar{A} \bar{B} C \vee A C (B \vee \bar{B})$$

$$= \bar{A} \bar{B} \bar{C} \vee \bar{A} \bar{B} C \vee A \bar{B} C \vee A B C$$

102. Für nebenstehendes Schaltnetz gilt

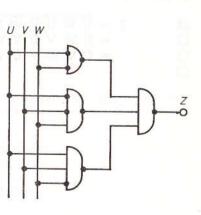

a)
$$Z = Z_1$$

$$\Box$$
 b) $Z = Z_2$

$$\Box$$
 c) $Z = Z_3$

$$\Box \quad d) \ Z = Z_4$$

A	В	C	$ Z_1 $	Z_2	Z_3	Z
0	0	0	0	0	0	0
0	0	1	1	0	0	0
0	1	0	0	1	1	1
0	1	1	1	1	0	1
1	0	0	0	0	1	1
1	0	1	1	1	1	0
1	1	0	0	0	0	0
1	1	1	1	1	1	1


103. Für nebenstehendes Schaltnetz gilt

$$\Box$$
 a) $Z = Z_1$

$$\Box \qquad b) \ Z = Z_2
\Box \qquad c) \ Z = Z_3$$

$$\Box$$
 d) $Z = Z_4$

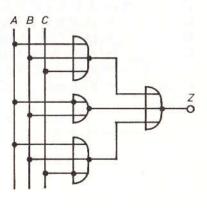
U	V	W	Z_1	Z ₂	Z_3	Z ₄
0	0	0	1	1	1	0
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	0	1	1	1
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	1	1	1	1
1	1	1	0	0	0	0
	0 0 0	0 0 0 0 0 1 0 1 1 0	0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1	0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 1 1 1 0 1	0 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 1 1 0 1 1 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 1 1	0 0 0 1 1 1 0 0 1 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 1 0 1 1 1

zu 102.

 $\Box \qquad = \overline{A} \ B \ \overline{C} \ \lor \ \overline{A} \ B \ C \ \lor \ A \ \overline{B} \ C \ \lor \ A \ B \ C$

zu 103.

$$Z = \overline{\overline{U}} \, \overline{\overline{W}} \, \overline{\overline{U}} \, \overline{\overline{V}} \, \overline{W} \, \overline{U} \, \overline{\overline{W}}$$


$$= \overline{U} \, \overline{W} \, \vee \, \overline{U} \, \overline{V} \, W \, \vee \, U \, V \, \overline{W}$$

$$= \overline{U} \, \overline{V} \, \overline{W} \, \vee \, \overline{U} \, V \, \overline{W} \, \vee \, \overline{U} \, \overline{V} \, W \, \vee \, U \, V \, \overline{W}$$

104. Für nebenstehendes Schaltnetz gilt

$$\begin{array}{c|cccc} & \text{a)} & \text{Z} & = Z_1 \\ \hline & \text{b)} & \text{Z} & = Z_2 \\ \hline & \text{c)} & \text{Z} & = Z_3 \\ \hline & \text{d)} & \text{Z} & = Z_4 \\ \end{array}$$

A	В	C	$ Z_1 $	Z_2	Z_3	Z_4
0	0	0	0	1	0	0
0	0	1	1	0	0	0
0	1	0	0	1	1	1
0	1	1	1	1	1	1
1	0	0	0	0	0	0
1	0	1	0	1	0	1
1	1	0	1	0	1	0
1	1	1	1	1	1	1

105. Nebenstehende Funktionstabelle gilt

- y	a)	für einen Halbsubtrahierer ohne	A	В	Z
		Entlehnungsausgang	0	0	0
	b)	für einen Halbaddierer ohne	0	1	1
		Übertragungsausgang	1	0	1
	c)	für eine Antivalenz	1	1	0
	d)	für eine Äquivalenz	-	-	

106. Ein schaltalgebraischer Ausdruck kann manchmal mit gegebenen Verknüpfungsgliedern nicht direkt aufgebaut werden, wenn die Verknüpfungsglieder

a) keinen ausreichenden Fan out habe
b) einen zu großen Fan out haben
c) einen zu großen Fan in haben
d) keinen ausreichenden Fan in haben

zu 104.

 $= (\overline{A} \times \overline{A} \times \overline{A}$

= AB V ABC V ĀB V B V ĀBC V BC V ABC V ĀBC V BC

 $= B (A \lor AC \lor \overline{A} \lor 1 \lor \overline{A}C \lor C \lor A\overline{C} \lor \overline{A}\overline{C} \lor \overline{C})$

 $= B \cdot 1 = B$

zu 105.

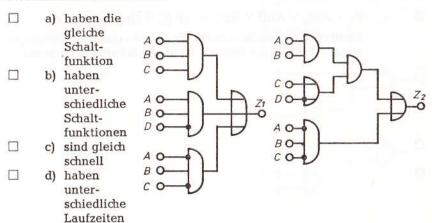
 \square Halbsubtrahierer: 0 - 0 = 0

0-1=1 (+1E)

□ 1 - 0 = 1

1 - 1 = 0

 \square Halbaddierer: 0+0=0 0+1=1

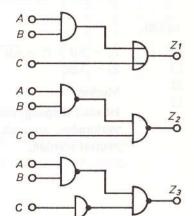

1 + 0 = 11 + 1 = 0 (+1U)

Antivalenzen eignen sich daher besonders gut zum Aufbau von Addierern und Subtrahierern.

zu 106. Merke:

- □ Der Fan out oder Ausgangsfächer gibt die maximale Anzahl von
 □ Eingängen weiterer Verknüpfungsglieder gleicher Technik an,
 □ mit der ein Ausgang belastet werden kann.
- Der Fan in oder Eingangsfächer ist die Anzahl der Eingänge eines Verknüpfungsgliedes. Ist er größer als erforderlich, so kann man Eingänge parallelschalten.

107. Nebenstehende Schaltnetze



108. Die Typisierung führt am einfachsten zu einem Schaltnetz aus nur

- a) NAND-Gliedern bei der disjunktiven Normalform
- □ b) NOR-Gliedern bei der disjunktiven Normalform
- □ c) NOR-Gliedern bei der konjunktiven Normalform
- □ d) NAND-Gliedern bei der konjunktiven Normalform

109. Für nebenstehende Schaltnetze gilt

- a) $Z_1 = Z_2$
- b) $Z_2 = Z_3$
- \Box c) $Z_1 = Z_3$
- \Box d) $Z_1 = Z_2 = Z_3$

zu 107.

 $Z_1 = ABC \lor AB\overline{D} \lor \overline{A}B\overline{C} = AB (C \lor \overline{D}) \lor \overline{A}B\overline{C} = Z_2$

Da die Signale im Schaltnetz für Z_2 teilweise drei Verknüpfungsglieder durchlaufen müssen, ist dieses Schaltnetz langsamer.

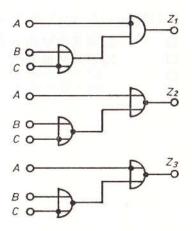
 \boxtimes

zu 108. Merke:

- Bei der Typisierung der disjunktiven Normalform wird das Ausgangs-ODER-Glied durch ein an allen Eingängen und am Ausgang
- □ negiertes UND-Glied ersetzt. Durch Verlagerung der Eingangsnegationen auf die Ausgänge der davorliegenden UND-Glieder entsteht ein Schaltnetz, das nur NAND-Glieder enthält.

Geht man von der konjunktiven Normalform aus, so wird das Ausgangs-UND-Glied durch ein allseitig negiertes ODER-Glied ersetzt. Durch Verlagerung der Negationen entsteht ein Schaltnetz aus NOR-Gliedern.

zu 109.


$$Z_1 = AB \lor C = \overline{AB} \lor \overline{C} = \overline{\overline{ABC}} = Z_3$$

$$Z_2 = \overline{\overline{ABC}}$$

Merke:

Ist eine Eingangsvariable direkt mit dem Ausgangs-ODER-Glied verbunden, so muß sie bei Verwendung von NAND-Gliedern negiert werden.

- 110. Für nebenstehende Schaltnetze gilt
 - \Box a) $Z_1 = Z_2$
 - \Box b) $Z_2 = Z_3$
 - c) $Z_1 = Z_3$
 - $\Box \qquad \text{d)} \quad Z_1 = Z_2 = Z_3$

111. Nebenstehende Funktionstabelle gilt für

- a) die Pseudotetradenerkennung beim Aikencode
- □ b) die Neunerkomplementbildung beim Drei-Exzeßcode
- □ c) die Neunerkomplementbildung beim Aikencode
- ☐ d) die Pseudotetradenerkennung beim Drei-Exzeßcode

A	В	C	D	Z
0	0	0	0	1
0 0 0 0 0 0 0 0 1 1 1 1	0	0 0 1 1 0	0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 1 1 0 0 0 0 0 0 0 0 0 0 0
0	0 0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1 1 1 0	0	1	0
0	1	0 1 1 0 0 1 1 0	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

- 112. Die einfachste disjunktive Normalform für Z aus Frage 111 lautet
 - a) $Z = \overline{A}\overline{B}\overline{C}\overline{D} \lor \overline{A}\overline{B}\overline{C}D \lor \overline{A}\overline{B}\overline{C}\overline{D} \lor AB\overline{C}D \lor AB\overline{C}\overline{D} \lor ABC\overline{D}$
- b) Z = ĀBC V ĀBD V ABC V ABD
- \Box c) $Z = \overline{ABC} \lor \overline{ABD} \lor \overline{ABC} \lor \overline{ABD}$
- d) $Z = \overline{A}BC \lor ABD \lor ABC \lor ABD$

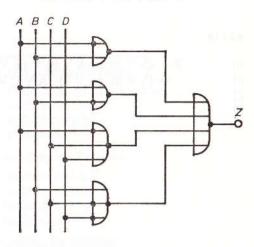
zu 110.

zu 111.

Der Ausgang Z ist bei den im Drei-Exzeßcode nicht ausgenutzten Kombinationen im Zustand 1 (vgl. hierzu Frage 35). Es handelt sich also um eine Pseudotetradenerkennung für den Drei-Exzeßcode.

 \boxtimes

zu 112.


□ Bei der Antwort a) handelt es sich um die vollständige disjunktive
 □ Normalform. Die richtige Antwort b) ergibt sich durch Ausklammern oder aus dem Karnaughdiagramm.
 □

113. Die einfachste konjunktive Normalform für Z aus Frage 111 lautet

- a) $Z = (\overline{A} \vee B) (A \vee \overline{B}) (\overline{B} \vee C \vee D) (A \vee \overline{C} \vee \overline{D})$
- $\Box \qquad \text{b)} \ \ Z = (\overline{A} \vee B) \ (A \vee \overline{B}) \ (\overline{B} \vee C \vee D) \ (B \vee \overline{C} \vee \overline{D})$
- $\Box \quad c) \ Z = (\overline{A} \lor B) \ (A \lor \overline{B}) \ (\overline{A} \lor C \lor D) \cdot (A \lor \overline{C} \lor \overline{D})$
- $\Box \qquad \text{d)} \quad Z = (\overline{A} \vee B) \quad (A \vee \overline{B}) \quad (\overline{A} \vee C \vee D) \quad (B \vee \overline{C} \vee \overline{D})$

114. Nebenstehendes Schaltnetz entspricht der Formel zu

- a) 113 a)
- b) 113 b)
- □ c) 113 c)
- □ d) 113 d)

115. Ist in einer Funktionstabelle der Ausgang Z häufiger im Zustand 1 als im Zustand 0, so ist die vollständige

- a) disjunktive Normalform aufwendiger als die konjunktive
- b) konjunktive Normalform aufwendiger als die disjunktive
- c) disjunktive Normalform ebenso aufwendig wie die konjunktive

zu 113.		and astronomic to a state of the state of	1
	$1 = \overline{A} \vee B_1 2 = A \vee \overline{B}_1$ $3 = \overline{B} \vee C \vee D_1$ $4 = \overline{A} \vee C \vee D_1$ $5 = A \vee \overline{C} \vee \overline{D}_1$ $6 = B \vee \overline{C} \vee \overline{D}_1$ Alle Felder im Zustand 0 sind überdeckt bei $1 \text{ und 2 und 3 und 5 (a)}$ $1 \text{ und 2 und 3 und 6 (b)}$ $1 \text{ und 2 und 4 und 5 (c)}$ $1 \text{ und 2 und 4 und 5 (d)}.$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
zu 114.		manufacture (1) in manufacture (1)	
	$Z = (\overline{\overline{A} \vee B}) \vee (\overline{A \vee \overline{B}}) \vee (\overline{\overline{A}} \vee \overline{\overline{B}}) \vee (\overline{\overline{A}} \vee \overline{\overline{B}) \vee (\overline{\overline{A}} \vee \overline{\overline{B}}) \vee (\overline{\overline{A}} \vee \overline{\overline{B}}) \vee (\overline{\overline{A}} \vee \overline{\overline{B}) \vee (\overline{\overline{A}} \vee \overline{\overline{B}}) \vee (\overline{\overline{A}}$	VCVD) V (BVCVD) EVD) (BVCVD)	1
zu 115.		of all reference there's make at 10 July and a state of the second section of the section of t	
	stand 1 als im Zustand 0 ist, Normalform aufwendiger, w gangszustand 1 enthält, wäl	ehr Eingangskombinationen im Zu- , so ist die vollständige disjunktive eil sie alle Minterme für den Aus- nrend die vollständige konjunktive ür den Ausgangszustand 0 enthält.	1

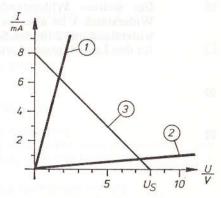
116.			er Funktionstabelle der Ausgang Z häufiger im Zustand 0 als nd 1, so ist die einfachste
		a)	disjunktive Normalform immer aufwendiger als die konjunktive
		b)	konjunktive Normalform immer aufwendiger als die disjunktive
		c)	disjunktive Normalform immer ebenso aufwendig wie die konjunktive
		d)	Normalform je nach Funktionstabelle konjunktiv oder disjunktiv; es können jedoch auch die einfachste disjunktive und konjunktive Normalform im Aufwand gleichwertig sein
117.	Bei	einer	n NAND-Glied ist der Ausgang im Zustand
			0, wenn mindestens ein Eingang im Zustand 1 ist
			1, wenn ein Eingang im Zustand 0 ist 0, wenn ein Eingang im Zustand 0 ist
			1, wenn ein Eingang im Zustand 1 ist
118.	Bei	einen	n ODER-Glied ist der Ausgang im Zustand
			0, wenn ein Eingang im Zustand 1 ist
			1, wenn ein Eingang im Zustand 0 ist 0, wenn ein Eingang im Zustand 0 ist
			1, wenn ein Eingang im Zustand 1 ist
119.	Bei	einen	n NOR-Glied ist der Ausgang im Zustand
			0, wenn ein Eingang im Zustand 1 ist
			1, wenn ein Eingang im Zustand 0 ist
			0, wenn ein Eingang im Zustand 0 ist 1, wenn ein Eingang im Zustand 1 ist
ino	_	53	
120.			a UND-Glied ist der Ausgang im Zustand
			0, wenn ein Eingang im Zustand 1 ist
			1, wenn ein Eingang im Zustand 0 ist 0, wenn ein Eingang im Zustand 0 ist
			1, wenn ein Eingang im Zustand 0 ist

zu 116.								
D milinasi	Die einfachste Normalform kann	man z	. B. d	ler Ka	ırnau	ghta	fel en	t.
	nehmen. In den Fragen 111, 112 u die einfachste konjunktive Norr gliedereingänge (14) enthält als	ind 11	3 stel	ht ein	Beis	piel,	in de	m
	häufiger im Zustand 0 als im Zus				(10)	, 00	., 0111	_
	Nebenstehende Karnaughtafel zeigt ein Beispiel, in dem die	CD	B	ĀB	ĀB	AB	AB	1
	einfachste disjunktive Normal- form weniger Verknüpfungs-		/	00	01	11	10	
	gliedereingänge enthält (9) als die konjunktive (12):	$\overline{C}\overline{D}$	00	0	1	0	0	m s-
	$Z = \overline{A} B \overline{C} \vee A \overline{B} C D$	\overline{C} D	01	0	1	0	0	
	$Z = (B \lor C) (\overline{A} \lor \overline{B}) (\overline{C} \lor D)$ $(A \lor \overline{C})$	C D	1 1	0	0	0	1	
		СD	1 0	0	0)	0	0	
zu 117.			da.	A B	Z		01 (
	NAND-Glied: $Z = \overline{AB} = \overline{A} \vee \overline{B}$			0 0				
				$ \begin{array}{ccc} 0 & 1 \\ 1 & 0 \end{array} $	100			
				1 1				
zu 118.				A B	Z			
	ODER-Glied: $Z = A \lor B$			0 0	0			
					1			
					500			
			D III.	1 1	1			
zu 119.	hundred State Company		-	A B	Z	ele L		
	NOR-Glied: $Z = \overline{A \lor B} = \overline{AB}$		(0 0	375			
			(0			
				1 0	100			
				1 1	0			
zu 120.				A B	Z	elg t		
	UND-Glied: $Z = AB$		(0 0	0			
			(0 1	0			
				1 0	0			
				1 1	1			

Zu Abschnitt 2

Verknüpfungsglieder*)

1.	Bei	einem	geschlossenen	idealen	Schalter
----	-----	-------	---------------	---------	----------


- a) ist der Spannungsabfall am Schalter gleich der Speisespannung U_S, der Strom durch den Schalter gleich 0
- b) ist der Spannungsabfall gleich 0, der Strom gleich $U_{\rm S}$ dividiert durch den Lastwiderstand $R_{\rm L}$
- c) ist der Spannungsabfall gleich US, der Strom gleich US: RL
- □ d) sind Spannungsabfall und Strom gleich 0

2. Bei einem offenen realen Schalter ist die Spannung am Schalter

- □ a) gleich 0
- □ b) gleich der Speisespannung U_S
 - c) gleich dem Spannungsabfall, den der Reststrom am Lastwiderstand hervorruft
- d) gleich der Speisespannung, vermindert um den Spannungsabfall, den der Reststrom am Lastwiderstand hervorruft

3. In der nebenstehenden Schalterkennlinie ist

- a) 2 die Widerstandsgerade für den Sperrwiderstand
- b) 2 die Widerstandsgerade für den Lastwiderstand
- c) 1 die Widerstandsgerade für den Durchlaßwiderstand
 - d) 3 die Widerstandsgerade für den Lastwiderstand

^{*)} Vgl. hierzu Abschintt 2 in dem "Handbuch der Elektronik; Teil 2 — Digitaltechnik".

4. In der Kennlinie zu Frage 3 beträgt

	Crebaligaaniyiqiladasiy	 a) der Durchlaßwiderstand 250 Ohm b) der Sperrwiderstand 1 kOhm c) der Lastwiderstand 1 kOhm d) der Sperrwiderstand 10 kOhm
zu 1.	At the piters gradulasconers bleafer Stocker	
	Der geschlossene ideale Schalter ist widerstandslos, es kann an ihm kein Spannungsabfall entstehen. Der Strom durch den Schal-	
	ter wird daher nur durch den Lastwiderstand begrenzt.	
	at your water to have a land and the land of the land	5. Die Abfallzeit (fall time) bei einem öffnenden Schalter wird bewirkt
	Amino and a supplemental and the same	 a) nur durch die Schaltungs- und Kontaktkapazitäten b) nur durch den Lastwiderstand
		 c) durch den Lastwiderstand und die Schaltungs- und Kontakt kapazitäten
zu 2.	STREET IN THE STREET STREET STREET STREET STREET	d) durch den Sperrwiderstand des Schalters
	Auch über einen offenen Schalter fließt ein kleiner Strom, der Reststrom. Die Spannung am offenen Schalter ist daher um den Spannungsabfall, den der Reststrom am Lastwiderstand hervor- ruft, kleiner als die Speisespannung.	6. Wenn die Einschaltzeit eines Schalters 3 μ s beträgt und die Ausschaltzeit 2 μ s, so ist die maximale Schaltfrequenz
	inger mit om rinframise spiritualistic sen scenti di	□ a) 200 kHz □ b) 500 kHz □ c) 333 kHz □ d) 1 MHz
zu 3.	To destablished refrects recognised to the Land	
	Die steilere Widerstandsgerade kennzeichnet den kleineren Widerstand. 1 ist also die Widerstandsgerade für den Durchlaß-	7. Der Durchlaßwiderstand einer Diode als Schalter
	widerstand und 2 für den Sperrwiderstand. Die Widerstandsgerade für den Lastwiderstand wird von U_{S} aus angetragen.	 a) steigt mit steigendem Durchlaßstrom b) sinkt mit steigendem Durchlaßstrom □ c) ist unabhängig vom Durchlaßstrom
\boxtimes	supreglessed of all to Co. In the	6 Division of Chaldelean arises Divide let
		8. Die maximale Schaltleistung einer Diode ist
		 a) gleich der maximalen Verlustleistung b) um das Verhältnis von maximalen Sperrspannungen zur Spannungsabfall an der leitenden Diode größer als die maximale Verlustleistung
		 □ c) etwas kleiner als die maximale Verlustleistung □ d) immer doppelt so groß wie die maximale Verlustleistung

	0.00
7777	1
4.14	

[X	1	
		•	
ſ		1	
L	-	J	

Die Widerstandsgerade 1 (Durchlaßwiderstand) steigt bei einer Spannungsänderung von 1 V um 4 mA. Der Durchlaßwiderstand

beträgt daher \boxtimes

Sperrwiderstand: $\frac{10 \text{ V}}{1 \text{ mA}} = 10 \text{ kOhm}$

Für den Lastwiderstand gilt: $\frac{8 \text{ V}}{8 \text{ mA}} = 1 \text{ kOhm}$

Die Schaltungs- und Kontaktkapazitäten sind bei geschlossenem Schalter kurzgeschlossen und damit entladen. Beim Offnen des Schalters werden sie über den Lastwiderstand aufgeladen.

X

Merke: zu 6.

Die Periodendauer der maximalen Schaltfrequenz muß mindestens ebenso groß sein wie die Summe aus Einschalt- und Ausschaltzeit.

 $f_{max} = \frac{1}{t_{ein} + t_{aus}} = \frac{1}{3 \,\mu s + 2 \,\mu s} = \frac{1}{5 \,\mu s} = 200 \text{ kHz}$

zu 7.

Merke:

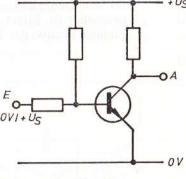
Da der Spannungsabfall an einer leitenden Diode annähernd konstant ist, sinkt der Durchlaßwiderstand mit steigendem Strom.

 \boxtimes

zu 8.

 $p_{Smax} = U_{Rmax} \cdot I_{Fmax} = U_{Rmax} \cdot \frac{P_{Vmax}}{U_F} = \frac{U_{Rmax}}{U_F} \cdot P_{Vmax}$

П

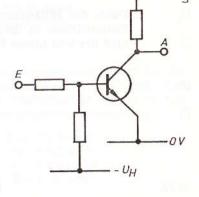

— 70 **—**

9. Nebenstehender Transistorschalter ist

a) immer leitend

- b) immer gesperrt
- c) bei OV am Eingang gesperrt

d) bei + Us am Eingang gesperrt



10. Der Sperrwiderstand eines Transistorschalters ist abhängig

- a) vom Lastwiderstand
- b) von der Temperatur
- c) von der Beschaltung der Basis
- d) von der Schaltkapazität

11. Die negative Hilfsspannung U_{II} in nebenstehender Schaltung hat die Aufgabe,

- a) den Transistor vor Überlastung zu schützen
 - b) den Sperrwiderstand temperaturunabhängig zu machen.
- c) den Sperrwiderstand zu erhöhen
- d) den Durchlaßwiderstand zu verringern

12. Durch Übersteuerung eines Transistors

- a) wird der Durchlaßwiderstand erhöht und die Ausschaltzeit verringert
- b) werden Durchlaßwiderstand und Ausschaltzeit verringert
- c) werden Durchlaßwiderstand und Ausschaltzeit erhöht
- d) wird der Durchlaßwiderstand verringert und die Ausschaltzeit erhöht

zu 9.		13. Durch Übersteuerung eines Transistors
	Da der Eingangsspannungsteiler nicht nach OV sondern $+$ $U_{\rm S}$ geschaltet ist, bleibt die Basis des Transistors auch bei OV am Eingang positiv, der Transistor damit immer leitend.	 a) werden Anstiegs- und Abfallzeit erhöht b) wird die Anstiegszeit erhöht, die Speicherzeit verringert c) wird die Anstiegszeit verringert, die Speicherzeit erhöht d) werden Anstiegs- und Abfallzeit verringert
		14. Der Kondensator in nebenstehender Schaltung
		□ a) bewirkt eine Temperaturstabilisierung □ b) verkürzt nur die Ausschalt-
zu 10.	Merke:	c) verkürzt nur die Einschaltzeit
	Der Sperrwiderstand eines Transistors wird von der Größe des Reststromes bestimmt. Dieser ist stark abhängig von der Tempe- ratur und der Beschaltung der Basis.	d) verkürzt sowohl die Einschalt- als auch die Ausschaltzeit
		15. Bei einem Transistorschalter ist das Produkt aus Reststrom $I_{\rm CR}$ und Speisespannung $U_{\rm S}$
zu 11.		a) die Schaltleistung
	Durch die Hilfsspannung wird bei OV am Eingang die Basis- Emitter-Diode in Sperrichtung vorgespannt. Es fließt dann nur noch der sehr kleine Reststrom $I_{\rm CEV}$.	 b) die Verlustleistung im gesperrten Zustand c) die Verlustleistung im leitenden Zustand d) die maximale Verlustleistung
		16. Bei einer Speisespannung $U_S = 12 \text{V}$, einem Lastwiderstand $R_L = 1 \text{kOhm}$,
\boxtimes		einer Kollektor-Emitter-Sättigungsspannung $U_{CEsat}=0.7\mathrm{V}$ und einem Reststrom $I_{CEV}=20~\mu\mathrm{A}$ betragen die Schaltleistung P_{Sr} die Verlust-
		leistung im leitenden Zustand P_{V1} und im gesperrten Zustand P_{V2} :
		a) $P_S = 144 \text{ mW}$; $P_{V1} = 84 \text{ mW}$; $P_{V2} = 0.24 \text{ mW}$ b) $P_S = 1.44 \text{ W}$; $P_{V1} = 0.24 \text{ mW}$; $P_{V2} = 8.2 \text{ mW}$
zu 12.		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Durch die Übersteuerung ist der Transistor übersättigt. Sowohl Basis-Emitter- als auch Basis-Kollektor-Diode sind in Durchlaß-	17. Ein Transistorschalter ist gefährdet
	richtung vorgespannt. Die Kollektor-Emitter-Restspannung und damit der Durchlaßwiderstand sind klein. Beim Ausschalten müs-	 □ a) beim Einschalten von kapazitiver Last □ b) beim Ausschalten von induktiver Last
	sen sehr viele Ladungsträger aus der Basis abgezogen werden, wodurch die Ausschaltzeit steigt.	 b) beim Ausschalten von induktiver Last c) beim Ausschalten von kapazitiver Last d) beim Einschalten von induktiver Last
	ma .	420

zu 13.	Die Übersteuerung beeinflußt die Anstiegszeit und die Speicherzeit. Die Anstiegszeit wird verringert, die Speicherzeit erhöht.	18.
zu 14.	The Box Luidencolus is submissionales	19.
Zu 14. □	Der Kondensator bewirkt, daß im Einschaltmoment die Basis- Emitter-Diode stärker in Durchlaßrichtung, im Ausschaltmoment stärker in Sperrichtung vorgespannt wird. Er verkürzt also die	
	Einschalt- und Ausschaltzeit.	20.
\boxtimes		
	Total or because representation of the states	
zu 15.	makkent men Tredition in the Protest and Relation	
	$I_{\rm CR}$ ist der Strom durch den gesperrten Transistor. An ihm fällt praktisch die gesamte Speisespannung ab. $I_{\rm CR}\cdot U_{\rm S}$ ist daher die Leistung, die der Transistor im gesperrten Zustand aufnimmt.	21
	16. Bu where Spulperpurpung the 12 V _e manufacturity with the state of the term of the te	
zu 16.	ARE NOT president lines 2 and annual and an experience of the second annual and an experience of the second and annual annual and annual annua	22
	$\begin{split} I_{C} &= \frac{12 \text{ V}}{1 \text{ kOhm}} = 12 \text{ mA} \\ P_{S} &= U_{S} \cdot I_{C} = 12 \text{ V} \cdot 12 \text{ mA} = 144 \text{ mW} \\ P_{V1} &= U_{CEsat} \cdot I_{C} = 0.7 \text{ V} \cdot 12 \text{ mA} = 8.4 \text{ mW} \\ P_{V2} &= U_{S} \cdot I_{CEV} = 12 \text{ V} \cdot 20 \ \mu\text{A} = 240 \ \mu\text{W} = 0.24 \text{ mW} \end{split}$	23
zu 17.	Introduce tal entangement and 18	
	Beim Einschalten von kapazitiver Last fließt ein großer Ladestrom, beim Ausschalten von induktiver Last entsteht eine große Induk- tionsspannung.	

8.	Beim Schalten von induktiver Last wird ein Transistor meist geschutzt
	 a) durch einen Parallelwiderstand b) durch Verwendung einer Hilfsspannung c) durch eine Diode parallel zur Induktivität d) durch eine Diode in Reihe zur Induktivität
9.	Eine H-Zuordnung liegt vor, wenn
	□ a) $0 riangleq + 100 V$, $1 riangleq + 95 V$ □ b) $1 riangleq -18 V$, $0 riangleq -30 V$ □ c) $0 riangleq + 6 V$, $1 riangleq -6 V$ □ d) $1 riangleq 0 V$, $0 riangleq -12 V$
20.	Wenn bei einer PNP-Transistor-Schaltstufe der leitende Transistor am Kollektor den Zustand 1 abgibt, so liegt vor
	 □ a) eine L-Zuordnung □ b) eine H-Zuordnung □ c) eine L- oder eine H-Zuordnung, je nach Kollektorpotential □ d) eine L- oder eine H-Zuordnung, je nachdem, ob OV am Emitter oder an der Basis liegen
21.	Nebenstehende Schaltung kann je nach Zuordnung sein
	□ a) ein UND- und ein NOR-Glied □ b) ein ODER- und ein NAND-Glied □ c) ein UND- und ein ODER-Glied □ d) ein NAND- und ein NOR-Glied
22.	Die Schaltung zu Frage 21 ist
	 □ a) ein UND-Glied bei H-Zuordnung □ b) ein UND-Glied bei L-Zuordnung □ c) ein ODER-Glied bei H-Zuordnung □ d) ein ODER-Glied bei L-Zuordnung
23.	Wird bei einem UND-Glied (0 \Rightarrow + U _S , 1 \Rightarrow OV) nach der Schaltung zu Frage 21 der Vorwiderstand nicht an OV sondern an — U _H gelegt, so hat dies den Vorteil, daß
	 a) die Stromaufnahme der Eingänge kleiner wird b) der Ausgangswiderstand beim Zustand 1 kleiner wird c) der Ausgangswiderstand beim Zustand 0 kleiner wird d) die Dioden besser sperren

— 75 **—**

zu 18.		24. Die Zahl der Eingänge (oder Fan In) wird bei einem Verknüpfungsglied
	Induktivität liegende Freilaufdiode schließt die entstehende Induktionsspannung kurz und hält insistor fern.	in Diodentechnik begrenzt □ a) durch die Schleusenspannung der Dioden □ b) durch die Ausgangsbelastbarkeit □ c) durch die minimale Stromaufnahme der Verknüpfungsglieder □ d) durch den Reststrom der Dioden
zu 19. Merke:		
	ht: dem Zustand 1 entspricht das höhere Potential. Chen die Zuordnungen b) und d) der H-Zuord- er L-Zuordnung.	25. In nebenstehendem ODER-Glied für L-Zuordnung entspricht ein offener Eingang
		□ a) dem Zustand 0 □ b) dem Zustand 1 □ c) dem Zustand 0 oder 1, je nach der
	ransistor liegt am Emitter immer das positivere ende Transistor schaltet dieses positivere Poten-	Beschaltung des anderen Einganges d) dem Zustand 0 nur bei unbelastetem Ausgang
	r durch. Wenn dieses positivere Potential dem cht, handelt es sich also um eine H-Zuordnung.	 Diodenglieder ohne Hilfsspannung haben gegenüber solchen mit Hilfs- spannung
	nik sind keine Negationen möglich. Daher kann rgestellten Schaltung nur um ein UND- oder ein	 a) ein größeres Fan Out und eine größere Schaltzeit b) ein kleineres Fan Out und eine kleinere Schaltzeit c) ein kleineres Fan Out und eine größere Schaltzeit d) ein größeres Fan Out und eine kleinere Schaltzeit
☐ ODER-Glied hand		 Diodenglieder sind nicht in beliebiger Anzahl hintereinander schaltbar weil
zu 22. Merke: Bei einem UND-G	lied sind die Dioden stärker für den Zustand 0	 a) dadurch die Dioden überlastet werden können b) durch die sich addierenden Spannungsabfälle an den Dioden die Ausgangsspannung den definierten O- oder 1-Bereich ver-
	aned sind the Dioden starker für den Zustand of Ednung) in Durchlaßrichtung vorgespannt, bei d für den Zustand 1 (\pm U $_{\rm S}$ bei H-Zuordnung).	läßt □ c) die Dioden dann nicht mehr sicher gesperrt werden □ d) dann die maximale Sperrspannung der Dioden überschritten werden kann
zu 23.		 Wenn ein Transistorschalter die NICHT-Funktion erfüllen soll, so muß er betrieben werden
☐ Dioden auch leite: (OV) anliegt. Die	ndung der negativen Hilfsspannung sind die nd, wenn an beiden Eingängen der Zustand 1 1 liegt dadurch am Ausgang über die leitenden er den relativ hochohmigen R _V .	 a) in der Kollektorschaltung b) in der Basisschaltung c) in der Kollektor- oder in der Emitterschaltung d) in der Emitterschaltung

		29. Nebenstehene Funktionstabelle entspricht
zu 24. □ □ □ ⊠	Wenn bei mehreren Eingängen nur eine Diode leitend ist und die anderen Dioden sperren, so addieren sich die Restströme der gesperrten Dioden. Die Summe der Restströme kann so groß wer- den, daß das Ausgangspotential außerhalb des definierten 0- oder 1-Bereiches liegt.	□ a) einer NAND-Funktion bei H-Zuordnung A B Z □ b) einer NAND-Funktion bei L-Zuordnung H H L □ c) einer NOR-Funktion bei H-Zuordnung H L H □ d) einer NOR-Funktion bei L-Zuordnung L H H L L H
zu 25.	Sind beide Eingänge unbeschadet, so liegt am Ausgang $+$ U _S (0). Der offene Eingang entspricht also hier dem Zustand 0. Das gleiche gilt, wenn bei einem offenen Eingang der andere an $+$ U _S liegt.	30. Nebenstehendes Schaltglied erfüllt bei positiver (H-) Zuordnung eine a) NAND-Funktion D D D D D D D D D D D D D D D D D D
zu 26.	Diodenglieder ohne Hilfsspannung haben ein kleineres Fan Out (vgl. hierzu Frage 23). Ihre Schaltzeit ist größer, weil die immer vorhandenen Schaltungskapazitäten sich über den R_V auf- oder entladen müssen.	31. Die beiden Dioden D in der Abb. zu Frage 30 haben die Aufgabe, a) die Basis-Emitter-Diode vor Überspannung zu schützen b) den Transistor vor Übersteuerung zu schützen c) den Transistor sicher zu sperren, wenn OV an einem Eingang liegen d) den Transistor sicher zu sperren, wenn + U _S an einem Eingang liegt
	An jeder Diode fällt mindestens die Schleusenspannung ab. Bei hintereinander liegenden Diodengliedern addieren sie sich.	32. Die RTL-Technik
		 a) kann nur NAND-Glieder realisieren b) hat den Nachteil eines kleinen Fan In c) kann NAND- und NOR-Glieder realisieren d) hat den Vorteil eines großen Fan Out
zu 28.	Die Signalumkehr eines Transistorschalters entspricht der 180°-Phasendrehung eines Transistorverstärkers. Nur bei der Emitterschaltung sind Eingangs- und Ausgangsspannung um 180° phasenverschoben.	33. Die DTLZ-Technik ist a) schnell und störsicher b) langsam und störanfällig c) schnell und störanfällig d) langsam und störsicher

zu 29.		34. Nebenstehende Schaltung ist + US
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	a) ein UND-Glied bei H-Zuordnung b) ein NAND-Glied bei L-Zuordnung c) ein ODER-Glied bei L-Zuordnung d) ein NOR-Glied bei H-Zuordnung
zu 30.		
	Die Eingangsdioden sind durchlässig für OV, also für den Zustand 0 bei H-Zuordnung. Es handelt sich daher um ein UND-Glied mit nachgeschalteter Negation, also um ein NAND-Glied.	35. Die typischen Kennzeichen der direkt gekoppelten Transistor-Gliede sind a) großer Signalhub, kleine Leistungsaufnahme b) kleiner Signalhub, kleine Leistungsaufnahme c) kleiner Störabstand, kleine Leistungsaufnahme d) großer Störabstand, große Leistungsaufnahme
zu 31.		d) grober Storaustand, grobe Leistungsaumanne
	Bei OV an einem Eingang entsteht hinter den Eingangsdioden ein positives Potential. Das reicht aber nicht aus, um die beiden Hubdioden D und die Basis-Emitter-Diode des Transistors durchzusteuern.	36. Die modifizierte DCTL-Technik (auch RTL-Technik genannt) unterschei det sich von der DCTL-Technik durch □ a) größere Schaltzeit □ b) größere zulässige Toleranz der Transistoren □ c) größeren Signalhub □ d) kleineren Eingangsstrom
zu 32.		+ U
	Da bei der RTL-Technik im Gegensatz zur DTL-Technik die Eingänge nicht gegeneinander entkoppelt sind, ist nur ein kleines Fan In möglich. Es lassen sich in der RTL-Technik sowohl NANDals auch NOR-Glieder verwirklichen.	37. Nebenstehendes Schaltbild erfüllt bei H-Zuordnung
zu 33.		□ a) eine Antivalenz □ b) eine Implikation
	Die DTLZ-Technik entspricht der Schaltung zu Frage 30, nur sind die beiden Hubdioden durch eine Z-Diode ersetzt. Dadurch ergibt sich ein Störabstand, der ungefähr der Durchbruchspannung der Z-Diode entspricht. Z-Dioden sind relativ langsam.	c) eine Äquivalenz d) eine Inhibition
	00	81

zu 34.	
	Liegt an einem Eingang $+\mathrm{U_S}$ (H), so liegt der Ausgang auf OV (L)
\boxtimes	A B Z Bei L-Zuordnung handelt es sich also um ein
	L L H NAND-Glied, bei H-Zuordnung um ein NOR- L H L Glied.
	H L L H H L
zu 35.	
	Die Ausgangsspannung ist bei einem leitenden Transistor gleich der Kollektor-Emitter-Sättigungsspannung, bei gesperrten Transistoren gleich der Basis-Emitter-Schleusenspannung des nachgeschalteten Schaltgliedes. Die Differenz zwischen beiden Spannungen und damit der Signalhub sind klein. Bei kleinem Signalhub ist auch der Störabstand klein. DCTL-Glieder haben eine geringe Leistungsaufnahme.
zu 36.	The state of the s
	Bei der modifizierten DCTL-Technik liegen in den Basiszuleitungen Widerstände. Dadurch werden die Schaltzeiten erhöht, weil die Ladungsträger über den Widerstand in die Basis gedrückt bzw. aus ihr abgezogen werden müssen. Unterschiedliche Basis-Emitter-Schleusenspannungen werden durch unterschiedliche Spannungsabfälle an den Widerständen ausgeglichen. Um diese Spannungsabfälle an den Widerständen ist der Signalhub größer. Der Einspanstragen ist wegen der verwerschaltzten Widerstände kleiner
	gangsstrom ist wegen der vorgeschalteten Widerstände kleiner.
zu 37.	A Description of the state of t
	Wenn beide Eingänge der Schaltung auf gleichem Potential liegen, sind beide Transistoren gesperrt und am gemeinsamen Ausgang liegt $+\mathrm{U_S}$ (H). Da bei H-Zuordnung $\mathrm{H}=1$ ist, handelt es sich um eine Äquivalenz.

38.	Ein unbestimmter Funktionswert liegt vor, wenn							
		a)	es für eine bestimmte Eingangskombination bei der jeweiliger Aufgabenstellung gleichgültig ist, ob der Ausgang im Zustand 1 oder 0 ist					
		b)	das Ausgangspotential außerhalb des definierten 0- oder 1- Bereiches liegt.					
		c) d)	die Eingangskombination 0 0 eine Eingangskombination nic			n		
39.			achste disjunktive Normal- nebenstehende Karnaugh-	AB	ĀB	ĀB	AB	$A\overline{B}$
	tafel lautet		1	00	01	11	10	
			$Z = \overline{B} \overline{C} \overline{D} \vee \overline{A} \overline{B} \overline{C}$ $Z = \overline{A} \overline{C} \vee \overline{B} \overline{D}$	<u>CD</u> 00	X	1	0	1
		c)	$Z = \overline{A} C \vee \overline{B} D$	CD 01	1	X	0	0
		d) $Z = A \overline{C} \vee \overline{B} \overline{D}$	C D 1 1	0	0	X	0	
				C D 1 0	X	0	0	X
40.	Ein Schaltnetz in "Tannenbaumtechnik" (die einzelnen Eingänge der Ausgangsverknüpfung sind über unterschiedlich viele Verknüpfungs- glieder mit dem Eingang verbunden)							
			ist schneller als die konjunktiv bringt bei Übergängen von einer anderen u. U. unerwünse	einer Eing	angsl	comb	inatio	on zu
	c) ist langsamer als die disjunktive Normalform d) ist aufwendiger als die disjunktive Normalform							

zu 38.		Zu Abschnitt 3
	Ein unbestimmter Funktionswert liegt vor, wenn der Ausgangs- zustand 0 oder 1 sein kann. Dies ist der Fall, wenn eine Eingangs- kombination nicht auftreten kann oder wenn sie auftritt, der Aus- gangszustand aber nicht ausgewertet wird oder ohne Bedeutung ist.	Impulsformer*)
		RC-Glieder in Reihenschaltung dienen zur Umformung von Rechteckspannungen in Nadelimpulse
zu 39.		 □ b) Nadelimpulsen in Rechteckspannungen □ c) Spannungen beliebiger Kurvenform in Rechteckspannungen □ d) Spannungen beliebiger Kurvenform in Nadelimpulse
	$Z = \bar{A} \bar{C} \vee \bar{B} \bar{D}$ $\bar{A} \bar{C}$ umfaßt die vier Felder links oben. $\bar{B} \bar{D}$ umfaßt die vier Eckfelder. Das Feld in der 3. Zeile (ABCD) gibt einen unbestimmten Funktionswert (\times), der zur Vereinfachung mit 0 angenommen werden kann, so daß dieser bei der Zusammenfassung nicht berücksichtigt werden muß.	 2. Was ist die Zeitkonstante τ eines RC-Gliedes? a) Die Zeitkonstante ist die Zeit für die Aufladung des Kondensators bis auf den Endwert. b) Die Zeitkonstante ist die Zeit, die zur völligen Entladung des Kondensators notwendig ist. c) Die Zeitkonstante ist die Zeit, in der sich die zeitabhängigen Größen bei Auf- und Entladung um 63 % dem Endwert nähern.
zu 40. □ ⊠	Ein Schaltnetz in "Tannenbaumtechnik" ist langsamer als die disjunktive oder konjunktive Normalform, weil mehr als zwei Verknüpfungsglieder hintereinander liegen. Da die Verknüp- fungsglieder aufgrund ihrer Schaltzeiten nacheinander schalten, kann es zu kurzen, unerwünschten 1-Impulsen kommen.	 3. Ein auf 100 V aufgeladener Kondensator eines RC-Gliedes wird entladen. Nach welcher Zeit beträgt die Kondensatorspannung noch etwa 5 V? a) nach τ b) nach 2 τ c) nach 3 τ d) nach 4 τ e) nach 5 τ
		4. Berechnen Sie die Zeitkonstante τ für ein RC-Glied mit R = 33 k Ω und C = 0,2 μ F. \Box a) $\tau = 6,6$ s \Box b) $\tau = 6,6$ ms \Box c) $\tau = 16,5$ s \Box d) $\tau = 16,5$ ms

^{*)} Vgl. hierzu Abschnitt 3 in dem "Handbuch der Elektronik; Teil 2 — Digitaltechnik".

zu 1.	
	RC-Glieder haben in der Digitaltechnik vorwiegend die Aufgabe Rechteckspannungen in Nadelimpulse (Differentiation) ode Nadelimpulse in Rechtecke (Integration) umzuformen. Die Umfor mung beruht auf Lade- und Entladevorgängen der Kondensatoren
zu 2.	Merke:
	Die Zeitkonstante τ eines RC-Gliedes ist die Zeit, in der sich die zeitabhängigen Größen (Ströme und Spannungen) um 63 % den angestrebten Endwert nähern.
	Nach Ablauf einer Zeitkonstanten ist die zu Beginn herrschende Differenz einer zeitabhängigen Größe vom Endwert auf 37% abgesunken.
zu 3.	
	Der auf $U_{C0}=100\mathrm{V}$ aufgeladene Kondensator entlädt sich in jeder Zeitkonstanten um 63 %, so daß jeweils eine Restladung von 37 % verbleibt. Es ist also: nach τ : $U_{C1}=0.37U_{C0}=37\mathrm{V}$ nach 2τ : $U_{C2}=0.37U_{C1}=0.37^2U_{C0}=0.135U_{C0}=13.5\mathrm{V}$ nach 3τ : $U_{C3}=0.37U_{C2}=0.37^3U_{C0}=0.05U_{C0}=5\mathrm{V}$
the Charles	
zu 4.	
	Zur Berechnung von τ gilt die Formel: $\tau = R \cdot C$ $\tau = 33 \text{ k}\Omega \cdot 0.2 \mu\text{F} = 33 \cdot 10^3 \Omega \cdot 0.2 \cdot 10^{-6} \frac{\text{s}}{\Omega}$ $\tau = 6.6 \cdot 10^{-3} \text{ s} = 6.6 \text{ ms}$

5.	Nebenstehende Schaltung zeigt ein
	 a) RC-Glied als Differenzierglied b) RC-Glied als Integrierglied c) RC-Glied zur Differentiation oder Integration, je nach Art der Eingangsspannung
6.	Wie ist die Zeitkonstante eines Differenziergliedes zu wählen, damit die bei der Differentiation einer Rechteckspannung entstehenden Nadel- impulse möglichst kurzzeitig sind?
	 a) groß gegenüber der Rechteckimpulsdauer b) gleich der Impulsdauer der Rechteckspannung c) sehr klein gegenüber der Rechteckimpulsdauer d) beliebig, da die Zeitkonstante keinen Einfluß auf die Dauer und Form der Nadelimpulse ausübt
7.	Wie ist der Einfluß der Rechteckspannung (Amplitude) auf die Impulsdauer der differenzierten Nadelimpulse?
	 a) mit steigender Spannung wächst die Nadelimpulsdauer b) mit fallender Spannung wächst die Nadelimpulsdauer c) die Spannung übt keinen Einfluß auf die Impulsdauer der Nadelimpulse aus
8.	Bei der Differentiation der nebenstehenden Rechteckspannung entstehen
	 a) positive und negative Impulse mit je 3 V b) nur positive Impulse mit 5 V 5 c) nur positive Impulse mit 3 V d) positive und negative Impulse mit je 5 V e) positive Impulse mit 5 V und negative Impulse mit 3 V
9.	Für welche der angegebenen Impulsfrequenzen ist das abgebildete Integrierglied aufgrund seiner Dimensionierung gut geeignet?
	□ a) 2 Hz

zu 5.	Merke:	10. Ein dynamischer Eingang eines Verknüpfungsgliedes ist beschaltet mit
	RC-Glieder, deren Ausgangsspannungen an den Kondensatoren abgegriffen werden, sind immer Integrierglieder.	 a) einem Differenzierglied b) einem Integrierglied c) einer Hintereinanderschaltung aus Differenzier- und Integrierglied
		11. Wie werden nach der Norm DIN 40700 Blatt 14 in den Symbolen für Schaltglieder Eingänge mit Differenziergliedern gekennzeichnet?
zu 6.	Merke:	a) nur durch entsprechende Beschriftung
	Die Zeitkonstante τ eines Differenziergliedes soll immer sehr klein gegenüber der Impulsdauer t der zu differenzierenden Rechteckspannung sein, damit die Auf- bzw. Entladung des Kon- densators innerhalb eines Rechteckimpulses abgeschlossen wird.	 b) nur durch das Symbol I c) nur durch das Symbol II d) durch die Symbole I und II, je nach der wirksamen Anstiegsflanke (positive oder negative) der steuernden Rechteckspan-
	$t > 5 \tau$ bzw. $\tau < \frac{t}{5}$	nung
zu 7.		12. In der dargestellten Schaltung zur Rechteckfrequenzmessung ist
	Die Amplitude der Rechteckspannung hat keinen Einfluß auf die Dauer der Nadelimpulse, da bei höheren Spannungen auch größere Lade- bzw. Entladeströme fließen.	+U _S
zu 8.	Die Amplitude des Nadelimpulses ist immer in Betrag und Richtung gleich dem Sprung der Rechteckspannung. Positive Spannungssprünge von 3 V (von $+2 \text{ V}$ auf $+5 \text{ V}$) erzeugen also positive Nadelimpulse mit max. 3 V und negative Spannungssprünge	R_1 C_2 OV
	von 3 V (von $+5$ V auf $+2$ V) negative Nadelimpulse mit max. 3 V.	\Box a) C_1/R_1 und C_2/R_2 je ein Differenzierglied
		b) C_1/R_1 und C_2/R_2 je ein Integrierglied c) C_1/R_1 ein Differenzier- und C_2/R_2 ein Integrierglied d) C_1/R_1 ein Integrier- und C_2/R_2 ein Differenzierglied
zu 9.	Merke:	13. Ein Schmitt-Trigger dient als
	Für Integrierglieder soll die Zeitkonstante τ immer größer als die Zeit T zwischen zwei aufeinanderfolgenden Nadelimpulsen sein. Bei der gegebenen Dimensionierung ist $\tau=0.15$ s, so daß die Impulsfolgefrequenz größer als 6.6 Hz sein muß.	 a) Spannungsschwellwertschalter b) Rechteckgenerator c) Rechteckformer bei sinusförmigen Eingangsspannungen d) Nadelimpulsformer bei sinusförmigen Eingangsspannungen
	00	89

zu 10.		14.	Die Schaltung des Schmitt-Triggers entspricht einem
	Dynamische Eingänge sprechen nur auf Potentialsprünge mit großer Flankensteilheit an; deshalb werden Differenzierglieder eingesetzt, die während der Flanken kurzzeitige Nadelimpulse abgeben.		 a) stark gegengekoppelten einstufigen Transistorverstärker b) stark mitgekoppelten einstufigen Transistorverstärker c) zweistufigen Transistorverstärker mit RC-Kopplung und einen gemeinsamen Emitterwiderstand d) zweistufigen Transistorverstärker mit Gleichspannungskopplung und einem gemeinsamen Emitterwiderstand
zu 11.	Falsch: Antwort b) und c).		
	Es sind zwei unterschiedliche Symbole für die Darstellung dynamischer Eingänge erforderlich, da zur Beurteilung von Zeitbedingungen zwischen ansteigenden und abfallenden Flanken unterschieden werden muß.	15.	Bei einem Schmitt-Trigger mit zwei NPN-Transistoren sind immer be offenem Eingang a) beide Transistoren gesperrt b) ein Transistor leitend und der andere gesperrt c) beide Transistoren leitend
		16.	Wie verhalten sich die Eingangsspannungen bei der Ein- und Ausschalt schwelle eines Schmitt-Triggers?
		115 115 100	 □ a) Einschaltschwellspannung > Ausschaltschwellspannung □ b) Einschaltschwellspannung < Ausschaltschwellspannung □ c) beide gleich groß
zu 12.			
	Die Wirkungsweise der Schaltung beruht auf einer Differentiation der eingangsseitigen Rechtecke durch C_1/R_1 und einer anschließenden Integration der Nadelimpulse durch C_2/R_2 zur Anzeigespannung.	17.	Die Kollektorwiderstände der beiden Transistoren eines Schmitt-Trig gers seien R_1 für den ersten und R_2 für den zweiten Transistor. Wi werden diese dimensioniert, damit der Kippvorgang möglichst sprung haft wird?
zu 13.	the bearing of the format of the first of th		\square a) $R_1 = R_2$ \square b) $R_1 < R_2$
	Der Schmitt-Trigger ist eine eingangsspannungsabhängige Kippschaltung. Der Kippunkt liegt bei einer durch die Dimensionierung festgelegten Spannung (Schwellwertschalter). Periodisch sich ändernde Eingangsspannungen führen zu ständig sich wiederholenden Kippvorgängen (Rechteckformer).	10 10	c) $R_1 > R_2$ d) R_1 und R_2 haben keinen Einfluß auf den Kippvorgang
	00		01

zu 14.	Die beiden Transistorstufen eines Schmitt-Triggers sind gleich- spannungsgekoppelt. Ein gemeinsamer Emitterwiderstand ver- leiht der Schaltung das Kippverhalten.	18. Welche Aufgabe hat der Kondensator eines Schmitt-Triggers?
zu 15. □ ⊠	Durch die Gleichspannungskopplung zwischen beiden Transistorstufen in Emitterschaltung wird immer der zweite Transistor leitend, wenn der erste gesperrt ist und umgekehrt.	□ a) Arbeitspunktstabilisierung f □ b) Arbeitspunktstabilisierung f □ c) Temperaturstabilisierung de □ d) Beschleunigung der Schaltvo □ e) Beschleunigung der Schaltvo
zu 16.	Beim Schmitt-Trigger ist immer die Eingangsspannung, bei der er in die Arbeitslage kippt (Einschaltschwelle), etwas höher als die der Ausschaltschwelle, bei der er wieder in die Ruhelage zurück- kippt.	19. Zur Anwendung des Schmitt-Triggers der Widerstände der ersten Transisto Schaltung zu Frage 18) durch einen Nuderstand an, durch den erreicht w gangsspannung annähernd 0 wird. □ a) R₁ □ b) R₂ □ c) R₃
zu 17.	Der Kippvorgang geht sehr schnell vor sich, wenn der Strom bei leitendem Transistor T_1 im gemeinsamen Emitterwiderstand kleiner ist als der bei leitendem Transistor T_2 . Deshalb wird oft $R_1 > R_2$ dimensioniert. Bei gleich großen Widerständen R_1 und R_2 bleibt die Bedingung trotzdem erfüllt, da durch den Basisspannungsteiler des zweiten Transistors ein geringer Anteil des durch R_1 fließenden Stroms abgezweigt wird.	

	R_1 R_3		+ U _S
	TOT!	1	T_2
Eing.	<i>T</i> ₁	1	Ausg,
	R ₂	44	- ov

- für Transistor T₁ für Transistor T₂
- er Schaltung
- orgänge des Transistors T₁
- orgänge des Transistors T₂
- als Temperaturwächter wird einer orstufe (Bezeichnung entspricht der Heißleiter ersetzt. Geben Sie den vird, daß bei Erwärmung die Aus-

zu 18.	
	Der Kondensator C beschleunigt die Schaltvorgänge des Transistors T_2 , da er die verzögernde transistorinterne Basis-Emitter-Kapazität und eventuelle Schaltkapazitäten kompensiert.
u 19.	
	Bei Erwärmung nimmt der Wert des NTC-Widerstandes ab und verringert die Basis-Emitter-Spannung des Transistors T_1 , wenn er anstelle von R_2 eingesetzt ist, so daß T_1 sperrt. Damit wird T_2 leitend und liefert eine Ausgangsspannung von annähernd $0\mathrm{V}$.

Zu Abschnitt 4

Kippschaltungen*)

1.		e von den unter a) bis d) aufgezählten Eigenschaften diejenigen ir Kippschaltungen charakteristisch sind.
	□ a)	Die Transistoren kennen nur die beiden extremen Leitzustände gesperrt und völlig leitend.
	□ b)	Die Arbeitspunkte der beiden Transistoren liegen immer in der Mitte der Arbeitsgeraden.
	□ c)	Der Ubergang zwischen beiden Transistor-Leitzuständen erfolgt sprunghaft.
	□ d)	Während eines Übergangs zwischen beiden Transistor-Leitzuständen ändert sich die Ausgangsspannung sehr langsam.
2.	Eine Kip gerüstet. annehme	pschaltung ist mit zwei gleichen Transistoren T_1 und T_2 aus- Welche Leitzustände können beide Transistoren gleichzeitig m ?
		T ₁ leitend, T ₂ leitend
		T ₁ leitend, T ₂ gesperrt T ₁ gesperrt, T ₂ leitend
		T ₁ gesperrt, T ₂ gesperrt
3.	Ein Flipf	lop ist eine Kippschaltung mit
	□ a)	zwei stabilen Zuständen
	□ b)	zwei unstabilen Zuständen
	□ c)	einem stabilen und einem unstabilen Zustand
	□ d)	insgesamt vier unterschiedlichen Zuständen
4.	Durch st ausgelös	atische oder dynamische Ansteuerung werden Kippvorgänge t bei
	□ a)	bistabilen Kippstufen
		monostabilen Kippstufen
		astabilen Kippstufen

^{*)} Vgl. hierzu Abschnitt 4 in dem "Handbuch der Elektronik; Teil 2 — Digitaltechnik".

5. Die dargestellte Schaltstufe ist

gang A das Potential + Us?

ein Bestandteil verschiedener Kippstufen. Bei welcher Ansteuerung an E liegt am Aus+US=12V

RB = 100 KD

zu 1.	Kippschaltungen besitzen meistens zwei Transistoren, die nur die beiden extremen Leitzustände gesperrt und völlig leitend annehmen können. Der Übergang zwischen beiden Leitzuständen erfolgt sprunghaft (Kippvorgang). Jedem möglichen Leitzustand ist ein Arbeitspunkt am oberen bzw. unteren Ende der Arbeitsgeraden eigen. Falsch sind deshalb: Antwort b) und c) Merke: Kippschaltungen kennen nur zwei unterschiedliche Zustände, die meist als Ruhe- und Arbeitslage definiert sind. Die beiden Transistoren verhalten sich dabei entgegengesetzt, so	 a) bei + U_S am Eingang E b) bei OV am Eingang E c) nach einem positiven Potentialsprung an E d) nach einem negativen Potentialsprung an E a) vor C_K und R_L b) von C_K und R_B c) von C_K, R_B und U_S d) von C_K und U_S
zu 3.	daß ein Transistor immer leitend ist, wenn der andere sperrt. Flipflop ist die heute übliche Bezeichnung einer bistabilen Kippstufe, also einer Kippstufe mit zwei stabilen Zuständen.	7. Die Sperrzeit der Schaltstufe in der Abb. zu Frage 5 beträgt □ a) t = 140 ms □ b) t = 0,1 s □ c) t = 70 ms □ d) t = 1,4 ms
zu 4. ⊠ ⊠	Nur aus einem stabilen Zustand heraus wird ein Kippvorgang durch äußere Ansteuerung ausgelöst. Da es bei astabilen Kipp- stufen keine stabilen Zustände gibt, ist keine Ansteuerung er- forderlich.	8. Schaltstufen mit dynamischen Eingängen sind enthalten in a) astabilen Kippstufen zweimal b) astabilen Kippstufen einmal c) monostabilen Kippstufen zweimal d) monostabilen Kippstufen einmal e) bistabilen Kippstufen zweimal f) bistabilen Kippstufen einmal
	— 96 —	— 97 —

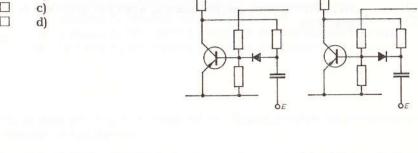
zu 5.	
	Die dargestellte Schaltstufe ist bei statischer Ansteuerung ständig leitend, da die Basis des NPN-Transistors über $R_{\rm B}$ positives Poten-
	tial erhält; das Ausgangspotential beträgt also OV. Negative Potentialsprünge am Eingang E verursachen eine Potentialver- schiebung an der Basis in negativer Richtung, so daß der Tran-
	sistor in den Sperrzustand gesteuert wird und damit $+$ $U_{\rm S}$ an A abgibt. Die Sperrzeit ist zeitlich begrenzt.
zu 6.	Merke:
	Die Sperrzeit t der dynamisch zu steuernden Schaltstuſe ist abhängig von der Koppelkapazität \mathbf{C}_K und vom Basisvorwiderstand \mathbf{R}_B .
	Es gilt die Formel: $t = 0.7 \cdot R_B \cdot C_K$
zu 7.	
	Berechnung der Sperrzeit t: $\begin{array}{l} R_B = 100 \; k\Omega \\ C_K = 1.4 \; \mu F \end{array}$
	$t = 0.7 \cdot R_B \cdot C_K = 0.7 \cdot 100 \cdot 10^3 \Omega \cdot 1.4 \cdot 10^{-6} F$ $t = 100 \text{ms} = 0.1 \text{s}$
zu 8.	
	Kippstufen setzen sich wie folgt zusammen:
	Astabile Kippstufe: 2 dynamisch zu steuernde Schaltstufen Monostabile Kippstufe: 1 dynamisch zu steuernde und 1 statisch zu steuernde Schaltstufe
\boxtimes	Bistabile Kippstufe: 2 statisch zu steuernde Schaltstufen

9.	Ein Flipflop besitzt die beiden Ausgänge A_1 und A_2 . An A_1 liegt ein Potential von 0 V und an A_2 von $+$ 12 V. Nach einem Kippvorgang stellen sich folgende Ausgangspotentiale ein:
	 □ a) 0 V an A₁ und 0 V an A₂ □ b) + 12 V an A₁ und 0 V an A₂ □ c) + 12 V an A₁ und + 12 V an A₂
	+121
10.	Nebenstehende Abb. zeigt die Grundschaltung einer Kippstufe. Welche Kippstufe ist es?
	□ a) astabile Kippstufe □ b) monostabile Kippstufe □ c) bistabile Kippstufe □ d) Schmitt-Trigger □ d) Schmitt-Trigger
11.	Für die Schaltung zu Frage 10 seien folgende Ausgangspotentiale angenommen: an A_1 0 V, an $A_2 + 12$ V. Durch welche statische Ansteuerung kann ein Kippvorgang ausgelöst werden?
	 □ a) 0 V an E₁ □ b) 0 V an E₂ □ c) + 1 V an E₁ □ d) + 1 V an E₂
12.	Geben Sie die Aufgabe der in der Abb. zu Frage 10 dargestellten Kondensatoren C_1 und C_2 an.

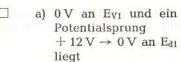
verursachten Schaltverzögerungen.

werden.

a) C_1 und C_2 differenzieren eingangsseitige Potentialsprünge. b) C_1 und C_2 sind Glättungskondensatoren. Sie verhindern, daß

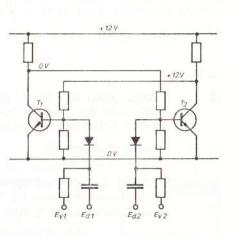

an E1 und E2 eventuell auftretende Störspannungen wirksam

c) C_1 und C_2 sind Kompensationskapazitäten. Sie kompensieren die durch die Diffusionskapazität der Transistoren T_1 und T_2


zu 9.	
	Bei einem Kippvorgang wechseln stets die Leitzustände beider Transistoren, deshalb ändern sich auch beide Ausgangspotentiale wie folgt:
	an A_1 von 0 V auf + 12 V an A_2 von + 12 V auf 0 V
zu 10.	
	Die abgebildete Schaltung setzt sich aus den beiden Schaltstufer mit den Transistoren T_1 und T_2 zusammen. Beide Schaltstufen sind statisch steuerbar, deshalb ist die Grundschaltung eine bistabile Kippstufe (Flipflop).
zu 11.	Merke:
	Flipflops werden wirksam angesteuert, indem der leitende Transistor gesperrt oder der gesperrte durchgesteuert wird.
	Bei den angenommenen Ausgangspotentialen ist T_1 leitend und T_2 gesperrt, also wird ein Kippvorgang durch Anlegen von $0\ V$ an E_2 eingeleitet.
zu 12.	
	Ein Kondensator, parallel zum oberen Teilerwiderstand des Basis spannungsteilers einer Transistorschaltstufe, kompensiert be richtiger Dimensionierung die innere Diffusionskapazität der Transistors, die parallel zum unteren Teilerwiderstand liegt.
\boxtimes	

13. In den nebenstehenden vier Abbildungen ist jeweils eine Schaltstufe eines Flipflops mit dynamischem Eingang dargestellt. Geben Sie die Schaltung an, in der durch negative Potentialsprünge an E (+12 V → 0 V) der leitende Transistor gesperrt wird.

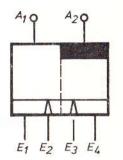
□ a)
□ b)
□ c)
□ d)



14. Ein Flipflop nach nebenstehender Abb. mit dynamischen Eingängen E_{d1} und E_{d2} und Vorbereitungseingängen E_{V1} und E_{V2} wird wirksam angesteuert, wenn

b) + 12 V an E_{V1} und ein Potentialsprung + 12 V \rightarrow 0 V an E_{d1} liegt

- c) 0 V an E_{V2} und ein Potentialsprung $+ 12 \text{ V} \rightarrow 0 \text{ V}$ an E_{d2}
- d) + 12 V an E_{V2} und ein Potentialsprung + 12 V \rightarrow 0 V an E_{d2} liegt



zu 13.	
	An E liegende negative Potentialsprünge werden durch den Kondensator differenziert zu negativen Nadelimpulsen, die nur dann NPN-Transistoren sperren können, wenn die Diode wie in Abb. b) gepolt ist.
zu 14.	
	Angesteuert wird bei dynamischen Eingängen der leitende Transistor mit dem Ziel der Sperrung. Nach den in der Abb. angegebenen Kollektorpotentialen ist T_1 leitend.
	Falsch sind deshalb: Antwort c) und d).
	Ein für T_1 negativer Sperrimpuls ergibt sich nur dann aus der Differentiation, wenn am Vorbereitungseingang E_{V1} gleichzeitig ein Potential von 0 V liegt.

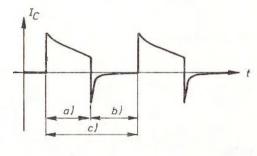
15.	Nebenst	ehende Abb. zeigt das genormte Symbol für	A19	A29
	□ b) □ c)	eine bistabile oder monostabile Kippstufe eine bistabile Kippstufe (Flipflop) eine monostabile Kippstufe (Monoflop) eine astabile Kippstufe		
			E ₁ 0	E20
16.	Der schv	varze Balken unter A2 in der Abb. zu Frage 15	kennzei	chnet, daß
	□ a) □ b) □ c) □ d)	Ausgang A ₂ bei Flipflop-Ruhelage das Binär		
17.		em zur Frage 15 dargestellten Flipflopsymbo e E1 und E2 sind	ol eingez	eichneten
	□ a)	statische Eingänge, die nur bei Binärsignal		

18.	Eine wirksame Ansteuerung für das dargestellte, in Ruhelage befindliche Flipflop ist gegeben bei					
		a) Signal 1 an E_1 b) Potentialsprung $0 \rightarrow 1$ an E_2				
		c) Signal 1 an E_1 und gleichzeitig Potential- sprung $0 \rightarrow 1$ an E_2				

c) dynamische Eingänged) Vorbereitungseingänge

zu 15.		e Symbol darf tufen (Flipflops)			14 nur für	19.	Geben Sie für das dargestellte Flipflop von den angegebenen Ansteuerungen diejenigen an, die zu einem Kippvorgang führen. a) 0 an E_1 b) 1 an E_1 c) 0 an E_6 d) 1 an E_6 e) $0 \rightarrow 1$ an E_3 f) $0 \rightarrow 1$ an E_3 und gleichzeitig 1 an E_2 g) $0 \rightarrow 1$ an E_4
zu 16.							$\square \qquad \text{h)} 0 \to 1 \text{ an } E_4 \text{ und gleichzeitig 1 an } E_5$
	dient zur Unte Arbeitslage. Merke: Der durch ein	unter einem Flip erscheidung der en schwarzen I bringt in Ruhe	Ausgangssig Balken geken	nale bei F nnzeichnete	tuhe- bzw. Ausgang	20.	An den durch die Parallelschaltung der dynamischen Eingänge gebildeten Eingang des nebenstehenden Flipflops wird eine Rechteckspannung U ₁ , die ständig zwischen 0 und 1 wechselt, angelegt. Wie verhält sich dabei die Ausgangsspannung U ₂ am Arbeitsausgang A gegenüber U ₁ ?
zu 17.		zu 17. und 18. Zusammenstell	ung der Flipf	lopeingäng	ge III		 a) U₂ hat gleiche Frequenz und Phasenlage b) U₂ hat gleiche Frequenz, aber eine Phasenverschiebung von 180° gegenüber U₁ c) U₂ hat die doppelte Frequenz
		Flipflop- eingang	Symbol	An-	Sign.am zugehör. Ausgang	21	 C) U₂ hat die doppelte Frequenz d) U₂ hat die halbe Frequenz An den Eingang eines Flipflops nach Abb. zu Frage 20 wird ein Nadel
		statisch	H	1	1	21.	impuls richtiger Polarität angelegt. Dabei befindet sich das Flipflop in Ruhelage. Für welche Dauer nimmt das Flipflop dabei Arbeitslage ein
		Statiscii	-	0	1		a) für beliebig lange Zeit, bis zum Eintreffen eines weiterer Impulses
zu 18.		dynamisch	+	0-1	1		$\begin{array}{ll} \square & \text{b) für die Dauer des Nadelimpulses} \\ \square & \text{c) für die Zeit } t = 0.7 \ R_B \ C_K \end{array}$
		dynamisar	-	1-0	1	22.	Eine astabile Kippstufe kann eingesetzt werden als
		dynamisch mit Vorbereitung		0-1 1 (Vorber 1-0	1		 □ a) Impulsspeicher für Rechteckimpulse □ b) Rechteckgenerator □ c) Rechteckformer aus sinusförmigen Spannungen □ d) Rechteckformer aus Nadelimpulsen
				1 (Vorber.)			□ e) Zeittaktgeber z. B. für Blinkschaltungen

		23. Die Frequenz der an einem Ausgang einer astabilen Kippstufe abgreif- baren Spannung ist abhängig von
zu 19.	Merke: Eine wirksame Ansteuerung ist nur dann möglich, wenn die Flipflopseite, deren Ausgangssignal 0 ist, angesteuert wird. (DIN 40700) Falsch: Eine wirksame Ansteuerung über die Eingänge E ₁ bis E ₃ ist nicht möglich, da der zugehörige Ausgang 1 liefert.	 a) der zeitlichen Folge eingangsseitiger Nadelimpulse b) der Frequenz einer eingangsseitigen sinusförmigen Spannung c) der Amplitude einer eingangsseitigen Spannung d) den durch die Dimensionierung der Schaltung festgelegten Sperrzeiten beider Transistoren
		24. An einem Ausgang einer astabilen Kippstufe liegt eine Rechteckschwingung mit einer Spannung $U_{ss}=6V$ und einer Frequenz $f=2kHz$. Wie verhält sich die Rechteckschwingung am anderen Ausgang?
		 a) sie hat die gleiche Spannung, aber halbe Frequenz b) sie hat die gleiche Frequenz, aber halbe Spannung c) sie besitzt gleiche Spannung und Frequenz, jedoch eine Phasenverschiebung von 180°
zu 20.	Das dargestellte Flipflop wird auch als Binärzählelement bezeichnet. Alle Potentialwechsel 0→1 verursachen einen Kippvorgang, da die Vorbereitungen durch die gekreuzten Verbindungen zu den eigenen Ausgängen immer fest geschaltet sind. Das Binärzählelement bewirkt eine Frequenzteilung im Verhältnis 2:1.	 25. Zur Erzeugung einer vollen Rechteckschwingung am Ausgang einer astabilen Kippstufe sind zwei Kippvorgänge (ein Kipp- und ein Rückkippvorgang) erforderlich. Wie werden beide ausgelöst? a) Beide Kippvorgänge werden durch äußere Ansteuerung ausgelöst. b) Der Kippvorgang wird von außen und der Rückkippvorgang durch innere Kondensatorumladung ausgelöst. c) Beide Kippvorgänge werden durch Potentialverschiebungen an den Kapazitäten selbsttätig ausgelöst.
zu 21.		the state of the s
⊠ □ □ □ zu 22.	Da ein Nadelimpuls immer einen Potentialsprung darstellt, kippt das Flipflop aus der angenommenen Ruhelage in die Arbeitslage. Diese wird für beliebig lange Zeit beibehalten (stabiles Verhalten in jeder Lage bei einem Flipflop).	26. Nebenstehende astabile Kippstufe hat eine Frequenz von
	Astabile Kippstufen erzeugen durch die ständig sich wiederholenden, selbsttätig ausgelösten Kippvorgänge Rechteckspannungen, die an beiden Ausgängen abgegriffen werden können. Diese Rechteckspannungen werden bei verschiedenen Schaltungen als Zeittakt an die taktgesteuerten Schaltungsteile angelegt.	□ a) 70 Hz □ b) 140 Hz □ c) 7 kHz □ d) 14 kHz
	<u> </u>	— 107 —


zu 23.	
	Da die Rechteckspannung an den Ausgängen der astabilen Kipp- stufe durch selbsttätig ausgelöste Kippvorgänge entsteht, ist die Frequenz nur von der Dimensionierung und nicht von einer äuße- ren Ansteuerung abhängig.
	Falsch:
	Antworten a) bis c).
	Astabile Kippstufen besitzen keine Eingänge zur Auslösung von Kippvorgängen.
zu 24.	
	Bei Kippstufen — auch bei astabilen Kippstufen — ist ein Transistor leitend, wenn der andere gesperrt ist. Beide Transistor-Leitzustände wechseln gleichzeitig, so daß Frequenz und Spannung an beiden Ausgängen gleich sind.
zu 25.	
	Astabile Kippstufen setzen sich aus zwei dynamisch gesteuerten Schaltstufen zusammen; ihre charakteristische Eigenschaft ist die bei einem eingangsseitigen Potentialsprung beginnende und von der Dimensionierung der Koppelkapazitäten abhängige Sperrzeit des Transistors.
	Merke:
	Bei astabilen Kippstufen lösen Kippvorgänge Potentialverschie- bungen an den Koppelkapazitäten aus, denen eine Kondensator- umladung folgt. Nach Vollendung jeder Umladung erfolgt ein weiterer Kippvorgang.
zu 26.	
	Die Frequenz der durch eine astabile Kippstufe erzeugten Recht- eckschwingung ist über die Schwingungsdauer T zu berechnen.
×	T setzt sich aus den beiden Sperrzeiten t_1 und t_2 der beiden Transistoren zusammen. Bei gleicher Dimensionierung beider Schaltstufen (vgl. hierzu die Abb.) gilt die Formel: $f = \frac{1}{1.4 \cdot R_B \cdot C_K} = \frac{1}{1.4 \cdot 180 \cdot 10^3 \Omega \cdot 56 \cdot 10^{-9} F}$
_	$1.4 \cdot R_B \cdot C_K$ $1.4 \cdot 180 \cdot 10^3 \Omega \cdot 56 \cdot 10^{-9} F$ f = 70 Hz

27. Welche der vier unter a) bis d) angegebenen Maßnahmen, jeweils allein angewendet, führen zu einer Verdopplung der erzeugten Rechteckfrequenz? a) Verdopplung der beiden Koppelkapazitäten CK1 und CK2 b) Halbierung der beiden Koppelkapazitäten CK1 und CK2 c) Verdopplung der beiden Basisvorwiderstände R_{B1} und R_{B2} d) Halbierung der beiden Basisvorwiderstände R_{B1} und R_{B2} 28. In der zu Frage 26 angegebenen Schaltung soll die Sperrzeit des Transistors T2 unter Beibehaltung der Frequenz vergrößert werden. Zu diesem Zweck sind: a) C_{K1} zu vergrößern und gleichzeitig C_{K2} zu verkleinern b) C_{K1} zu verkleinern und gleichzeitig C_{K2} zu vergrößern c) C_{K1} und gleichzeitig R_{B1} zu vergrößern d) C_{K2} und gleichzeitig R_{B2} zu vergrößern e) C_{K1} zu vergrößern und gleichzeitig R_{B2} zu verkleinern f) C_{K1} zu verkleinern und gleichzeitig R_{B2} zu vergrößern g) C_{K2} zu vergrößern und gleichzeitig R_{B1} zu verkleinern

h) C_{K2} zu verkleinern und gleichzeitig R_{B1} zu vergrößern

29. Das nebenstehende Stromdiagramm stellt die Kondensatorströme eines Koppelkondensators einer astabilen Kippstufe während beider Umladephasen dar. Geben Sie an, für welche der
in der Abb. angegebenen
Zeiten a) bis c) der zugehörige Schalttransistor gesperrt ist.

****	27
ZU	LI.

Eine Verdopplung der Rechteckfrequenz ergibt sich bei einer Halbierung der Schwingungsdauer T.

\boxtimes

$$T = t_1 + t_2$$

$$f = \frac{1}{T}$$

 \boxtimes

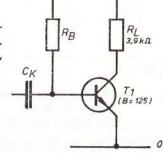
Die Sperrzeiten t1 und t2 und damit die Schwingungsdauer werden halbiert durch Halbierung von CK1 und CK2 oder RB1 und RB2.

zu 28.

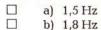
X Die geforderte Vergrößerung der Sperrzeit des Transistors T2 ist möglich durch eine Erhöhung von RB2 oder CK2. Gleichzeitig muß jedoch, damit die Frequenz beibehalten wird, die Sperrzeit von Transistor T₁ um den gleichen Wert verringert werden. Dies geschieht durch Verkleinern von RB1 oder CK1.

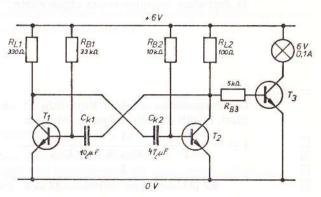
X \boxtimes

П


zu 29.

 \boxtimes Die beiden Umladevorgänge bei einem Kondensator unterscheiden sich durch ihre Zeitkonstante. Während des Umladevorgangs über RB mit der großen Zeitkonstanten ist der zugehörige Transistor gesperrt. Man erkennt diesen Umladevorgang im Stromdiagramm an der langsameren Stromabnahme.


- 30. Wie groß darf das Verhältnis $\frac{t_1}{t_2}$ der beiden Transistor-Sperrzeiten einer astabilen Kippstufe gewählt werden?
 - a) 0,1...100
 - b) 0.2...5
 - c) mindestens 0,1 und nach oben unbegrenzt
 - d) beliebig
- 31. Für eine astabile Kippstufe sind folgende frequenzbestimmende Teile festgelegt: $R_{B1}=100~k\Omega$, $C_{K1}=0.047~\mu F$ und $R_{B2}=220~k\Omega$. In welchen Grenzen darf CK2 gewählt werden, damit noch ein sicheres Kippen gewährleistet ist?
 - a) 1 nF...0,022 μF
 - b) 4,7 nF...0,1 μF
 - c) 0.022 . . . 0.22 µF
 - d) beliebig
- 32. Eine der beiden Schaltstufen einer astabilen Kippstufe ist nebenstehend abgebildet. In welcher Größe muß RR gewählt werden, damit der Transistor richtig schaltet?


b) 220 kΩ c) $470 \text{ k}\Omega$

33. Nebenstehende Schaltung zeigt einen Blinkgeber. Die Blinkfrequenz für die angegebene Dimensionierung beträgt

- c) 2,2 Hz
- d) 5,6 Hz

711 30	Merke

Das Verhältnis t1:t2 der beiden Transistor-Sperrzeiten darf den Wert 1:5 nicht unterschreiten und den Wert 5:1 nicht überschrei- \boxtimes

ten, um ein sicheres Kippen zu gewährleisten.

zu 31.

Geht man davon aus, daß das Verhältnis t1: t2 zwischen 0,2 und 5

$$C_{K2} = 0.004...0.1 \mu F$$

 $C_{K2} \approx 4.7 \text{ nF}..0.1 \mu F$

zu 32.

Für die Berechnung von RB gilt folgende Formel: \times

X $R_B \leq 0.8 \cdot B \cdot R_L$

$$R_B \le 0.8 \cdot 125 \cdot 3.9 \cdot 10^3 \,\Omega = 390 \,\mathrm{k}\Omega$$

Der errechnete Wert ist der größtmögliche Basisvorwiderstand. Er darf ohne weiteres etwas kleiner sein.

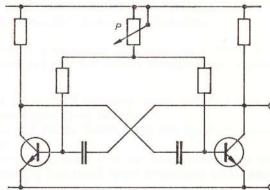
zu 33.

Die dargestellte astabile Kippstufe ist unsymmetrisch dimensioniert. Es gilt deshalb folgende Formel:

$$\begin{array}{c|c} \square & \qquad f = \cfrac{1}{0.7 \cdot (R_{B1} \cdot C_{K1} + R_{B2} \cdot C_{K2})} \\ \square & \qquad f = \cfrac{1}{0.7 \; (33 \; k\Omega \cdot 10 \; \mu F + 10 \; k\Omega \cdot 47 \; \mu F)} = \cfrac{1.8 \; Hz}{} \end{array}$$

34. Wie ist das Verhältnis der Brennzeit zur Pausendauer der Glühlampe in der Schaltung zu Frage 33?

a) Brenndauer = Pausendauer


35. Welche Aufgabe hat

das Potentiometer P

in der nebenstehenden Schaltung einer astabilen Kippstufe?

b) Brenndauer kleiner als Pausendauer

c) Brenndauer größer als Pausendauer

a) Feinabgleich der erzeugten Rechteckfrequenz

b) Symmetrierung der erzeugten Rechteckspannung

c) Abgleich der bei allen Transistoren vorhandenen Unsymme-

d) Beeinflussung der Transistor-Sperrzeiten beider Transistoren

e) Kompensation der durch Temperatureinfluß entstehenden Frequenzänderungen

f) Kompensation der durch Speisespannungsschwankungen ent-stehenden Frequenzänderungen

36. Eine monostabile Kippstufe setzt sich zusammen aus

a) zwei statisch gesteuerten Schaltstufen

b) einer statisch und einer dynamisch gesteuerten Schaltstufe

c) zwei dynamisch gesteuerten Schaltstufen

zu 34.	
	Die Glühlampe leuchtet auf, wenn der Transistor T_3 leitend angegesteuert wird, also während der Sperrzeit von T_2 . Diese ist: $t_2=0.7\cdot R_{B2}\cdot C_{K2}=0.7\cdot 10~k\Omega\cdot 47~\mu F=329~ms$
	In der Sperrzeit für Transistor T_1 brennt die Lampe nicht. Sie beträgt: $t_1=0.7\cdot R_{B1}\cdot C_{K1}=0.7\cdot 33\ k\Omega\cdot 10\ \mu F=231\ ms$
	Die Brenndauer t₂ der Glühlampe ist also größer als die Pausendauer t₁.
zu 35.	
	Durch P wird die Sperrzeit beider Transistoren beeinflußt. Da die erzeugte Frequenz der Kehrwert der Summe beider Sperrzeiten ist, wirkt sich eine Veränderung von P auf die Frequenz aus.
	Merke: Je größer der mit dem Potentiometer P eingestellte Wert ist, um so kleiner ist die Frequenz.
	El de l'amparitation le mainre spaler que au presentation de la servicion de l
zu 36.	
	Eine monostabile Kippstufe besteht immer aus einer statisch und einer dynamisch gesteuerten Schaltstufe.

37.				oei einer monos nelage befindet?		ife leitend, wen	n
		a)	bei Verwendur Schaltstufe	ng von NPN-Tra	nsistoren die s	tatisch gesteuert	e
		b)	bei Verwendu Schaltstufe	ng von PNP-Tra	nsistoren die st	atisch gesteuert	e
		c)	bei Verwendur erte Schaltstuf	ng von NPN-Tra e	insistoren die d	ynamisch gester	1-
		d)	bei Verwendu erte Schaltstuf	ng von PNP-Tra e	nsistoren die d	ynamisch gesteu	1-
		e)	in jedem Falle	die statisch ges	teuerte Schaltst	ufe	
				lie dynamisch ge			
38.	ent			dliche monosta rung gekippt. Di			
		a)		d durch einen w ten Kippvorgand		äußere Ansteue	-
		b)		nn nur durch A		Speisespannun	g
		c)	unstabil und	wird nach einer ängigen Zeit dur			
		d)		vird mit dem W	egfall der Anst	euerung beende	t
39.			nebenste-		+U _S		
		nden	Abb. ist	T T		L	
	ein		onostabile	R _{C1} R _{B1}		Rc2	
		pstuf				12	
			Geben Sie		99-1519W-10-10-1		
			e von den o-				•
			bis d) auf-	T ₁ C ₁₄	\vee	To	
			n Bautei-	CK CK	R _{B2}	2	
			Dauer der	() July	6-1	H-(K)	
			n Arbeits-			T	
	lag	e best	immen.		D RV	R _{B3}	
		a)	Ry und Ce	a business		L	
			R _{B1} und C _K -		7.7.1		
			T ₁ , C _K und R _{C2}	a covered to			
		200	R _{B2} und R _{B3}				
				No.	: Ce		
				0			

zu 37.	
	In Ruhelage ist immer die dynamisch gesteuerte Schaltstufe einer monostabilen Kippstufe leitend, unabhängig von der Verwendung
	von NPN- oder PNP-Transistoren, da in jedem Falle deren Transistor über einen Basisvorwiderstand positives Potential bei
\boxtimes	NPN-Transistoren bzw. negatives Potential bei PNP-Transistoren an der Basis gegenüber Emitter erhält.
\boxtimes	
zu 38.	
	Eine monostabile Kippstufe besitzt immer eine stabile Ruhelage, die durch einen von außen eingeleiteten Kippvorgang beendet
	wird, und eine unstabile Arbeitslage, deren Dauer von der Dimen- sionierung der Schaltung abhängt. Der Rückkippvorgang erfolg
	dann selbsttätig.
П	
zu 39.	
	Die Dauer der unstabilen Arbeitslage entspricht der Sperrzeit des dynamisch gesteuerten Schalttransistors. Die die Sperrzeit be-
	stimmenden Teile sind: Basisvorwiderstand $R_{\rm B1}$ und Koppelkondensator $C_{\rm K}$.
	Zur Berechnung der Dauer der unstabilen Arbeitslage gilt die Formel: $t=0.7\cdot R_{B1}\cdot C_{K}$

0.	darge	estel	Eingangssignal ist erforderlich, um die in der Abb. zu Frage 39 lte monostabile Kippstufe aus der stabilen Ruhelage in die Arbeitslage zu kippen?
		b)	Potential 0 V Potentialsprung 0 V \rightarrow +U _s Potential +U _s Potentialsprung +U _s \rightarrow 0 V
1.	Welc	he A	Aufgabe hat die Diode D in der Abb. zu Frage 39?
		a)	Sperrung der bei der Differentiation der eingangsseitigen Potentialsprünge entstehenden positiven Impulse
		b)	Verringerung der Eingangsspannung um den konstanten Wert der Diffusionsspannung der Diode
		c)	Temperaturkompensation für Transistor T ₁
2.	Im S	yml lop	ool der monostabilen Kippstufe ist zur Unterscheidung vom ein Pfeil eingezeichnet. Die Pfeilspitze zeigt zum
		b)	in Ruhelage leitenden Transistor in Arbeitslage leitenden Transistor Ausgang, der in Ruhelage 1 bringt Ausgang, der in Arbeitslage 1 bringt

zu 40.	
	Der in der Abb. zu Frage 39 dargestellte Eingang ist ein dynamischer Eingang (zu erkennen an $C_{\rm e}$), der nur bei negativen Potentialsprüngen negative Nadelimpulse (Richtung der Diode D) an den Transistor $T_{\rm 1}$ weitergibt.
zu 41.	
	Die Diode sperrt die bei der Differentiation entstehenden posi- tiven Nadelimpulse, da nur die negativen Nadelimpulse den in
	Ruhelage leitenden Transistor T ₁ sperren sollen.
zu 42.	Falsch:
	Die Antworten a) und b) sind falsch, weil der leitende Transistor — je nach Zuordnung — am Ausgang 0 oder 1 haben kann.

Zu Abschnitt 5

Schaltwerke*)

1.	Zähler fü	r Binärcodes sind einzuordnen in die Gruppe der
	□ b)	Schaltglieder Schaltwerke Schaltnetze
2.	Nach ihr	er Wirkungsweise lassen sich Binärzähler unterscheiden in
	□ b) □ c) □ d)	Asynchronzähler und Rückwärtszähler Dualzähler und Vorwärtszähler Asynchronzähler und Synchronzähler Synchronzähler und BCD-Zähler Vorwärtszähler, Rückwärtszähler und Dualzähler
3.		m sechsstelligen Dualzähler sind die einzelnen Flipflops der ch bewertet mit
	□ b) □ c)	0, 2, 4, 8, 16 und 32 1, 2, 4, 6, 8 und 10 1, 2, 4, 8, 16 und 32 1, 2, 4, 2, 10 und 20
4.	Das besc	ndere Merkmal der BCD-Zähler ist
	□ b)	die spezielle Anwendung zur Zählung von Werten, die kleiner als 1 sind und somit als Dezimalbruch dargestellt werden die Darstellung des Zählergebnisses in einem Code, der jede einzelne Dezimalstelle verschlüsselt die spezielle Anwendung zur Zählung von Impulsen, die nach dem BCD-Code verschlüsselt sind

^{*)} Vgl. hierzu Abschnitt 5 in dem "Handbuch der Elektronik; Teil 2 — Digitaltechnik".

		5. Die dargestellte Schaltung zeigt einen
zu 1. □ ⊠	Zähler gehören zur Gruppe der Schaltwerke. Schaltwerke sind Schaltungen, die Speicherglieder, also z.B. Kippstufen, enthalten.	 □ a) Asynchronzähler für Dualcode vorwärtszählend □ b) Synchronzähler für Dualcode vorwärtszählend □ c) Asynchronzähler für Dualcode rückwärtszählend □ d) Synchronzähler für Dualcode rückwärtszählend
zu 2.	Merke:	
	Zähler lassen sich unterteilen nach ihrer Wirkungsweise in Asynchronzähler und Synchronzähler nach ihrer Zählrichtung in Vorwärtszähler und Rückwärtszähler nach der Codierung ihres Zählergebnisses in Dualzähler, BCD-Zähler usw.	 6. Wie ist die Lage der Flipflops des in Frage 5 dargestellten Zählers, wenn am Eingang E_Z 9 Impulse wirksam geworden sind und vorher alle Flipflops in Ruhelage waren? □ a) alle Flipflops in Arbeitslage □ b) Flipflop A und B in Arbeitslage und Flipflop C und D in Ruhelage □ c) Flipflop A und D in Arbeitslage und Flipflop B und C in Ruhelage □ d) Flipflop A, B und C in Arbeitslage und Flipflop D in Ruhelage
zu 3.		7 vir 1 v 7 v 1 v 1 v 1 v 1 v 1 v 1 v 1 v 1 v
	Dualzähler liefern das Zählergebnis im Dualcode, deshalb sind	7. Welche Flipflops des in Frage 5 dargestellten Zählers kippen beim 10. Impuls?
	die Flipflops mit den Wertigkeiten der Dualstellen bewertet. Diese sind: $2^0 = 1$, $2^1 = 2$, $2^2 = 4$, $2^3 = 8$, $2^4 = 16$ und $2^5 = 32$.	 a) Alle vorher in Ruhelage befindlichen Flipflops kippen in die Arbeitslage. b) Alle vorher in Arbeitslage befindlichen Flipflops kippen in die
zu 4.		Ruhelage. C) Flipflop A nimmt Ruhelage an, Flipflop B nimmt Arbeitslage
	BCD-Zähler liefern das Zählergebnis in einem BCD-Code; das ist ein Code, der jede Dezimalstelle einzeln verschlüsselt.	an und Flipflop C und D kippen nicht.
\boxtimes		Wie groß ist die Zählerkapazität des in Frage 5 dargestellten Zählers?
		□ a) 4 □ b) 9 □ c) 15 □ d) 16

__ 121 __

— 120 **—**

		9.	Welche Zähler nehmen nach dem 10. Impuls wieder die ursprüngliche Ausgangsstellung (vor dem 1. Impuls) ein und wieviel Flipflops müssen solche Zähler mindestens enthalten?
zu 5.	neltatemperaturated at the morte against produced		 □ a) Dualzähler mit 4 Flipflops □ b) Dualzähler mit 5 Flipflops □ c) BCD-Zähler mit 3 Flipflops
	Die in der dargestellten Schaltung verwendeten Flipflops werden dynamisch mit Potentialsprüngen $0 \rightarrow 1$ gesteuert. Dabei ergibt sich eine steigende Zählfolge, wenn die Weiterschaltimpulse je-		d) BCD-Zähler mit 4 Flipflops
	weils an den Ruheausgängen der vorherliegenden Flipflops abge- griffen werden. Der Zählerstand vergrößert sich mit jedem Impuls	10.	Wodurch unterscheiden sich Synchronzähler von Asynchronzählern?
	um 1, wenn die Flipflopwertigkeiten entsprechend dem Dualsystem festgelegt sind, also 1 für Flipflop A, 2 für Flipflop B, 4 für Flipflop C und 8 für Flipflop D.		 a) Synchronzähler sind schneller aber schaltungsaufwendiger b) Synchronzähler sind langsamer und schaltungsaufwendiger c) Synchronzähler sind schneller und weniger aufwendig in der Schaltung
	the top of the purpose of many law and accordance with a particular and the second of the the		 d) Synchronzähler sind langsamer und weniger aufwendig in der Schaltung
zu 6.	made day to Committee or		
	Der dargestellte Dualzähler zeigt den Zählerstand "9" im Dual- code an den Arbeitsgängen an.	11.	Eine gemeinsame Taktleitung für alle Flipflops und eine Vorbereitungs- schaltung mittels Schaltnetzen bei jedem Flipflop ist kennzeichnend für
	9 riangleq 1001 Es befinden sich also nur die Flipflops A und D in Arbeitslage.		 a) Asynchron-Vorwärtszähler für Dualcode b) Synchron-Vorwärtszähler für Dualcode
	man James operation per not be used to the control of the 19		 □ c) Asynchron-Rückwärtszähler für Dualcode □ d) Synchron-Rückwärtszähler für Dualcode
		12.	Bei einem vorwärtszählenden Synchronzähler für den Aikencode sind
zu 7.	registration military and in a registration of the registration of		die vier vorhandenen Flipflops
	Vor dem 10. Impuls ist der Zählerstand des Dualzählers $9 riangleq 1001$ und nimmt mit dem 10. Impuls den Stand $10 riangleq 1010$ an.		 a) mit 1, 2, 4 und 8 bewertet b) mit 1, 2, 4 und 2 bewertet c) nicht bewertet, da der Aikencode nicht additiv ist
	Es ändern sich die letzten beiden Dualstellen, so daß also nur die		
	Flipflops A und B kippen.	13.	Wieviel Flipflops werden für einen Dualzähler benötigt, wenn dieser bis zu 999 am Eingang anliegende Impulse zählen soll?
		-02	a) 8 - and the combined of the state of the
zu 8.		10.0	□ b) 9 □ c) 10
	Unter Zählerkapazität versteht man das größte darstellbare Zählergebnis. Dieses ist bei einem Dualzähler erreicht, wenn alle Flip-		□ d) 11 □ e) 12
	flops in die Arbeitslage gekippt sind. Für den vierstelligen Zähler ergibt sich der Wert: $1+2+4+8=15$	10	and the control of th

— 122 —

zu 9.		nötigt, wenn dieser bis zu 999 am Eingang anliegende Impulse zähle soll?
	BCD-Zähler kennen nur 10 sich voneinander unterscheidende Stellungen, denen die Werte 0, 1, 29 zugeordnet sind. Es sind mindestens vier Flipflops erforderlich; damit sind 16 unterschiedliche Stellungen möglich, von denen jedoch 6 ungenutzt bleiben.	□ a) 8 □ b) 9 □ c) 10 □ d) 11 □ e) 12
zu 10.		 Ein vierstelliger rückwärtszählender Dualzähler befindet sich in seine Ausgangsstellung, bei der alle Flipflops Ruhelage einnehmen. Wievie
	Synchronzähler unterscheiden sich in der Schaltung von Asynchronzählern insofern, als alle Flipflops gleichzeitig angesteuert werden, während beim Asynchronzähler alle Flipflops nacheinander — jeweils vom vorherliegenden — angesteuert werden. Daraus resultiert für den Synchronzähler eine kürzere Einstellzeit; hierbei ist die Schaltungstechnik jedoch aufwendiger.	Eingangsimpulse sind erforderlich, damit Flipflop 1 (Wertigkeit 1) un Flipflop 8 (Wertigkeit 8) in Arbeitslage und Flipflop 2 (Wertigkeit 2 und Flipflop 4 (Wertigkeit 4) in Ruhelage kommen? a) 6 b) 7 c) 8 d) 9
zu 11.	Merke:	
	Gemeinsame Taktleitung für alle Flipflops und Schaltnetze in den Vorbereitungsleitungen aller Flipflops kennzeichnen alle Syn- chronzähler, unabhängig von der Zählrichtung und Codierung.	
		 Geben Sie von den aufgeführten BCD-Zählern diejenigen an, die meh als vier Flipflops benötigen.
zu 12. □ ⊠	Der Aikencode ist ein additiver Code mit den Stellenwertigkeiten 1, 2, 4 und 2. Ebenso sind die Flipflops von synchronen und asynchronen Zählern für diesen Code bewertet.	 a) Drei-Exzeß-Code-Zähler b) Biquinärcode-Zähler c) Zwei-aus-Fünf-Code-Zähler d) Aikencode-Zähler Rechteck- 1 0 20 30 40 Zähler ausgäng
71 12		17. Das dargestellte Block- schaltbild zeigt das Prin- zip einer
zu 13.	Die Anzahl z der verschiedenen Zählerstellungen eines Dualzählers ist abhängig von der Anzahl n der Flipflops. Es gilt die Formel: $z=2^n$ Für beispielsweise $\mathbf{n}=10$ Flipflops ergeben sich $z=2^{10}=1024$ Zählerstellungen, von denen 1000 zur Darstellung der Werte $0\dots 999$ genutzt werden.	□ a) digitalen Zeitmessung □ b) digitalen Fre- quenzmessung □ c) Frequenzteiler- stufe □ d) Frequenz-
	der Werte U 333 genutzt werden.	vervielfachung Zeittaktgenerator

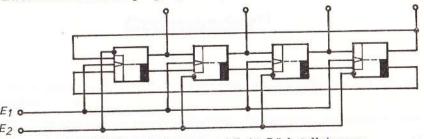
14.						
14.	4 bits dan forderlich Der gefore	rgeste derte	llt; es maxin	sind	also f ählers	: Stelle einer Dezimalzahl durch ür jede Dekade 4 Flipflops er- tand von 999 erstreckt sich über = 12 Flipflops notwendig.
1 15.	Zählerstä	nde ei	nes 4-	bits-R	ückwä	rtszählers für Dualcode:
	Impuls		Flip	flop	Lugui	
		8	4	2	1	0 ≙ Flipflop-Ruhelage
		0	0	0	0	1
	1.	1	1	1	1	-0.16
	2.	1	1	1	0	
	3.	1	1	0	1	8.16
	4.	1	1	0	0	
	5.	1	0	1	1	
	6.	1	0	1	0	
	7.	1	0	0	1	
	8.	1	0	0	0	Transcorption of the second
	usw.					MARKAGA MARKANINI MINI MPANIKA TI
	Der Binär benötiger	rcode n dahe	ist si€ er 7 bz	ebenst w. 5 F	ellig, lipflop	der 2-aus-5-Code fünfstellig. Sie s je Dekade.
17.	Frequenz zeit tv vo	messu or, in	ing. D der di	er Ze e aus	ittaktı der ar	zeigt das Prinzip einer digitaler generator gibt die Toröffnungs n Eingang liegenden Frequenz f gelangen und gezählt werden.

18.	Torö	ffnu aufe	r digitalen Frequenzmessung gibt ein Zeittaktgenerator eine ngszeit von 1 ms vor. Während der Dauer, in der das Tor offen en die Impulse mit unbekannter Frequenz über das Tor zum ngang. Der Zählerstand am Ende der Zählzeit entspricht
		b)	der Frequenz in Hz dem Zehnfachen der Frequenz in Hz dem Hundertfachen der Frequenz in Hz der Frequenz in kHz
4.0			
19.	Das I	'rın:	zip der digitalen Zeitmessung beruht darauf, daß
		b)	die Impulse eines geeichten Zeittaktgenerators während der zu messenden Zeit durch einen Zähler gezählt werden. Der Zählerstand entspricht der Zeit. während der zu messenden Zeit eine Kapazität an einer konstanten Spannung aufgeladen wird. Die Höhe der Ladespannung am Ende der Ladung ist ein Maß für die Zeit. die zu messende Zeit durch eine geeignete Schaltung in eine symmetrische Rechteckschwingung mit konstanter Frequenz, aber von der Zeit abhängiger Amplitude, umgeformt wird. Der Mittelwert dieser Spannung ist ein Maß für die Zeit.
20.	Schal erste	tung n be	estellte g zeigt die eiden eines FF1 FF2
		a)	asyn-
			chronen
			Vor- wärts-
			zählers
			für
			Dualcode
			synchronen Vorwärtszählers für Dualcode
		c) d)	
			Schieberegisters Schieberegisters
	estate.	- 1	

— 127 —

□ Der Zähler in der beschriebenen Anordnung zählt die Impulse der □ unbekannten Frequenz, die in eine Millisekunde fallen. Da als 21. Die darge-	
Frequenz die Anzahl der Schwingungen pro Sekunde definiert ist, stellte Schal-	
entspricht der Zählerstand 1/1000 der Frequenz in Hz, also der Frequenz in kHz.	
zu 19. Falsch: a) asynchronen Vorwärtszählers für Dualcode b) synchronen Vorwärtszählers für Dualcode	
□ c) asynchronen Rückwärtszählers für Dualcode □ d) synchronen Rückwärtszählers für Dualcode □ synchronen Rückwärtszählers für Dualcode □ e) Schieberegisters	
Die genannten Verfahren sind zur Zeitmessung anwendbar, doch sind es keine digitalen Zeitmeßverfahren! 22. Die dargestellten beiden Flipflops bil-	
den einen Ausschnitt aus einem Schiebe- register. Welche Lage	0
nimmt Flipflop 2 nach einem Schiebetakt ein, wenn sich Flipflop 1 vorher in Ruhelage befand?	1
□ a) Flipflop 2 nimmt Arbeitslage ein □ b) Flipflop 2 behält die Ruhelage bei □ c) die Lage von Flipflop 2 ist nicht von Flipflop 1 abhängig	ı, daheı
zu 20. unbestimmt	
Die Schaltung zeigt die ersten beiden Stufen eines Synchron- zählers. Dies geht daraus hervor, daß beide Flipflops gleichzeitig	
(synchron) angesteuert werden und die Vorbereitungen jeweils vom vorherliegenden und vom eigenen Flipflop abhängig sind. Beide UND-Glieder ermöglichen nur dann eine Vorbereitung für FF 2, wenn sich FF 1 in Arbeitslage befindet; es handelt sich also	thalten
um einen Vorwärtszähler.	
□ b) 5 and qual resource and a large larg	
□	

24. Wieviel Schiebetakte sind mindestens erforderlich, um eine sechsstellige Binärinformation in ein Schieberegister seriell einzuspeichern?


	□ d) 4 □ b) 5 □ c) 6 □ d) 7 □ e) 8
	 Ein Schieberegister, das als Parallel-/Seriencodewandler für 4-bit-Informationen eingesetzt ist, kann ausgerüstet sein mit
 Zu 21. □ Die Schaltung zeigt einen Ausschnitt aus einem Schie □ Alle Flipflops werden gleichzeitig durch einen an E_T □ Impuls (Schiebetakt) angesteuert. Flipflop 2 übernimmt □ Vorbereitungseingänge die gespeicherte Information (l □ Arbeitslage) von Flipflop 1 während des Schiebetaktes. 	liegenden c) 4 Paralleleingängen und 1 Serienausgang über beide d) 4 Paralleleingängen und 4 Parallelausgängen
	□ a) 4 □ b) 5 □ c) 6 □ d) 7
	27. Ein wirksamer Schiebeimpuls für das dargestellte Schieberegister ist
zu 22. ☐ Flipflop 2 behält die Ruhelage bei, da sich Flipflop ☐ Schiebetakt in Ruhelage befand. (Die Ruhelage von Flip ☐ während des Schiebetaktes auf Flipflop 2 über.)	1 vor dem oflop 1 geht E_{T}
Merke: Bei einem Schieberegister übernimmt jedes Flipflop von dem in Schieberichtung vorherliegenden Flipflop.	seine Lage $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
zu 23.	28. Wie erfolgt die Rückstellung in die Ruhelage bei dem zu Frage 27 abgebildeten Schieberegister?
 ☐ Mit vier Taktimpulsen wird die Information um vie verschoben, so daß der Inhalt des vierten Flipflops jetz ist. ☐ 	er Flipflops
— 130 —	- 131 -

		 Geben Sie für das zu Frage 27 dargestellte Schieberegister die Lage Flipflops nach 4 Schiebetakten an. 	aller
zu 24.	Mit jedem Schiebetakt wird eine Stelle einer seriell angebotenen Binärinformation in das Schieberegister übernommen. Für eine sechsstellige Binärinformation sind also mindestens sechs Schiebe- takte erforderlich.	 a) alle Flipflops in Ruhelage b) FF 1, FF 2 und FF 3 in Arbeitslage; FF 4 in Ruhelage c) FF 1 in Ruhelage; FF 2, FF 3 und FF 4 in Arbeitslage d) alle Flipflops in Arbeitslage 	
zu 25.			
□ □ ⊠ ⊠ Zu 26.	Zur parallelen Aufnahme einer 4stelligen Binärinformation müssen die Flipflops eines Schieberegisters mit Paralleleingängen ausgestattet sein, während die serielle Signalausgabe sowohl über einen speziellen Serienausgang wie auch über einen von mehreren Parallelausgängen möglich ist.	30. Wie oft kippt Flipflop 3 des zu Frage 27 abgebildeten Schieberegi wenn 4 Schiebetakte wirksam werden? □ a) Flipflop 3 kippt nicht □ b) Flipflop 3 kippt einmal □ c) Flipflop 3 kippt zweimal □ d) Flipflop 3 kippt viermal	sters,
	Es sind 4 Schiebetakte erforderlich, denn damit ist die gesamte Binärinformation eingespeichert und kann ohne weiteren Schiebe- takt an Parallelausgängen der gleichen Flipflops abgegriffen werden.		
		31. Mit Ringzähler bezeichnet man einen	
		 a) Binärzähler, dessen Flipflops durch magnetische Ring speicher ersetzt sind b) Binärzähler, der nach Erreichen seines maximalen Zähle des wieder zurück zählt c) Zähler, der wie ein Schieberegister aufgebaut ist und d 	rstan-
zu 27.	Der Schiebeimpuls wird an die gemeinsame Taktleitung E_T angelegt. Wirksam wird der Potentialsprung $0 \rightarrow 1$; das geht aus der offenen Pfeildarstellung der dynamischen Eingänge hervor.	Zählergebnis in einem 1-aus-n-Code, z. B. 1-aus-10-Code gestellt wird	, dar-
		32. Bei Ruhelage eines Ringzählers für 1-aus-10-Code befinden sich	
zu 28.	Die Rückstellung der Schieberegisterflipflops in die Ruhelage erfolgt über negierte statische Eingänge. Alle Rückstelleingänge sind zu einer Leitung E_R zusammengefaßt. An diese wird 0 angelegt.	 □ a) alle Flipflops in Ruhelage □ b) ein Flipflop in Arbeitslage und alle restlichen in Ruhelag □ c) alle Flipflops in Arbeitslage 	e
1		122	

— 132 —

zu 29.	
	Die an den Vorbereitungseingängen von FF 1 liegende Information verursacht bei jedem Schiebeimpuls eine Arbeitslage. Diese schiebt sich mit 4 Schiebetakten durch das gesamte Schieberegister, so daß nach 4 Takten alle Registerflipflops Arbeitslage einnehmen.
zu 30.	
	Mit dem zweiten Schiebetakt nimmt Flipflop 3 die Ruhelage von Flipflop 1 ein und kippt durch den dritten Schiebetakt wieder in die Arbeitslage. Für Flipflop 3 ergeben sich also insgesamt zwei Kippvorgänge.
zu 31.	
	Ringzähler sind Schieberegister, von denen meist nur ein Flipflop
	gesetzt ist. Außerdem wird das Ausgangssignal des letzten Flip- flops auf die Informationseingänge des ersten Flipflops zurück-
	geführt. Schiebeimpulse schieben die eingegebene Information ständig durch das ringförmig aufgebaute Register.
zu 32.	
	Bei Ringzählern für 1-aus-n-Code sind entweder ein Flipflop in Arbeitslage und alle anderen in Ruhelage oder ein Flipflop in Ruhelage und alle restlichen in Arbeitslage. (Der zweite der genannten Fälle ist in dieser Frage nicht erwähnt!)

33. Der dargestellte Ringzähler ist für 1-aus-4-Code ausgelegt. Welchen Zweck erfüllen die Eingänge E1 und E2?

- a) E_1 ist Zählimpulseingang und E_2 ist Rückstelleingang
- b) E_2 ist Zählimpulseingang und E_1 ist Rückstelleingang
- c) E₁ ist Zählimpulseingang und über E₂ wird eine Vorbereitung angeschaltet
 - d) E_2 ist Zählimpulseingang und über E_1 wird eine Vorbereitung angeschaltet

zu 33.	
	Die dynamischen Eingänge aller Flipflops sind zu dem gemeinsamen Eingang E_1 zusammengefaßt. Dieser dient zur Aufnahme
	der Zählimpulse. Über E ₂ werden alle Flipflops statisch in die gewünschte Lage gesetzt, z. B. Flipflop 1 in Arbeitslage und alle
	übrigen in Ruhelage. Dies entspricht einer Rückstellung.

Zu Abschnitt 6

Codewandler*)

1.		Nixi ern 0	eröhre bezeichnet man eine Ziffernanzeigeröhre, bei der die 9
		a)	aus sieben Leuchtsegmenten, die einzeln ansteuerbar sind, zusammengesetzt werden
		b)	aus zehn Leuchtsegmenten, die einzeln ansteuerbar sind, zu- sammengesetzt werden
		c)	als zehn einzeln ansteuerbare Katoden einer Glimmlampe aus- gebildet sind
		d)	durch zehn optische Systeme auf einer Mattscheibe projizier- bar sind
2.	Zur	Anze	eige der Zählerstände mit Ziffernanzeigeröhren eignen sich
		a)	alle Zähler mit den verschiedensten Codes gleich gut
			BCD-Zähler besser als Dualzähler
		c)	Dualzähler besser als BCD-Zähler
3.	Die	Anst	euerung von Nixieröhren geschieht über
		a)	Dualcode
			Aikencode
			2-aus-5-Code
			1-aus-10-Code
4.	Die not	zur wend	Anpassung des Zählercodes an den für Ziffernanzeigeröhren igen Code verwendeten Codewandler sind vorwiegend
		a)	Schaltnetze mit Verknüpfungsliedern
			ohmsche Widerstandsnetzwerke
			Schaltwerke

^{*)} Vgl. hierzu Abschnitt 6 in dem "Handbuch der Elektronik; Teil 2 — Digitaltechnik".

5. In nebenstehender Abb. ist ein Ausschnitt

Wert wird decodiert?

einer Decodiermatrix (Dualer BCD-Code

→ 1-aus-10-Code) dargestellt. Welcher

— 139 **—**

		□ a) 2	
		□ b) 6	
		□ c) 9	
III A TH		□ d) 11	
Zu 1.			
	Nixieröhren sind Glimmröhren mit meistens 10 ziffernförmig aus-		
	gebildeten Katoden und einer gemeinsamen Anode. Die Betriebs- spannung beträgt etwa 200 V Gleichspannung. Die am negativeren Potential (Masse) angelegte Katode (Ziffer) leuchtet auf.	 Die Vorteile des Ringzählers für 1-aus-10-Code gegenübe asynchronen BCD-Zählern sind 	
	indicated (and any angelogic rations (aniet) redefice dan	 a) keine Decodiermatrix für die Ansteuerung von Zifferöhren (Nixieröhren) erforderlich 	
		b) Anzahl der Flipflops ist geringer	
		☐ c) Einstellzeit des Zählers nach einem Zählimpuls ist k	
		7. Die dargestellte	
zu 2.		Schaltung zeigt $\frac{R}{2}$ 2.1	
	BCD-Zähler eignen sich besser, da alle BCD-Codes jede Ziffer	a) einen AD-Wandler	
\boxtimes	einer Dezimalzahl getrennt darstellen. An einen BCD-Zähler kann	b) einen DA-Wandler 2 ² o 4·1	
	also direkt für jede Dekade ein Decodierer und eine Ziffern-	\Box c) ein UND-Glied $\frac{R}{\delta}$ RV	
	anzeigeröhre angeschaltet werden.	\Box d) ein ODER-Glied $2^3 \circ \bigcirc $	
zu 3.		8. In der zu Frage 7 dargestellten Schaltung ist die Ausgangsgrö	
	Bei Nixieröhren darf immer nur eine Katode angesteuert werden.		
	Für eine Röhre mit 10 Ziffern dürfen also jeweils 9 Katoden nicht	a) ein dem digitalen Eingangssignal analoger Strom	
	durchgeschaltet sein. Dieser Forderung wird der 1-aus-10-Code	b) ein dem digitalen Eingangssignal analoger Spannung	
\boxtimes	gerecht.	Ry □ c) der Reziprokwert der digitalen Eingangsgröße	
		d) der negierte Wert der digitalen Eingangsgröße	
zu 4.		9. Bei einem AD-Wandler nach dem Sägezahnverfahren wird d	
\boxtimes	Die Umsetzung des Zählercodes in den für Ziffernanzeigeröhren	Eingangsspannung verglichen mit	
	erforderlichen Code geschieht meist durch Schaltnetze mit Ver-	a) Potential 0 V	
	knüpfungsgliedern. Diese Schaltnetze sind oft als Diodenmatrix	□ b) dem ständig sich ändernden Momentanwert der	
	dargestellt.	spannung	
		□ c) Potential +U ₈	
		□ d) der Ausgangsspannung des internen Impulszählers	

Ausgang

zu 5.		
	Das dargestellte Verknüpfungsglied ist ein UND-Glied. Setzt man für die Potenzen der 2 die damit ausgedrückten Stellenwerte, so erhält man: $Z=\overline{1}\ 2\ 4\ \overline{8},$ also $Z=1$, wenn Eingang 2 und 4 das Binärsignal 1 bringen, wenn also der Zählerstand 6 ist.	
zu 6.		
	Bei Ringzählern werden alle Flipflops synchron angesteuert, deshalb sind die Einstellzeiten kürzer als bei Asynchronzählern. Außerdem kann eine Decodiermatrix entfallen, da der Zählerstand direkt in dem für Nixieröhren erforderlichen Code an den Ausgängen des Ringzählers abgegriffen werden kann.	
zu 7.		
	Die dargestellte Schaltung ist ein Digital-Analog-Wandler. Die Eingangsgröße ist die 4-bit-Binärinformation mit den Stellen 2^{0} , 2^{1} , 2^{2} und 2^{3} . Die Ausgangsgröße ist ein der Binärinformation analoger Strom I_{g} .	
zu 8.		
	Die Ausgangsgröße ist der dem Eingangssignal analoge Strom $\rm I_g.$ Dieser Strom erzeugt am Widerstand $\rm R_V$ einen Spannungsabfall, der dem Strom proportional ist und damit ebenfalls analog der eingangsseitigen Binärinformation ist.	
zu 9.		
	Bei einem AD-Wandler nach dem Sägezahnverfahren wird a der Eingangsspannung ein proportionales Zeitintervall abgeleit	
	Dies geschieht dadurch, daß eine intern erzeugte Sägezahnspannung mit dem Potential $0\mathrm{V}$ und mit der Eingangsspannung in zwei Differenzverstärkern verglichen wird.	

10.	Ausgangsgröße abhängig von		
			der Frequenz des Impulsgenerators der Amplitude der zu zählenden Impulse
			der Anstiegssteilheit der Sägezahnspannung
11.	Vorteile des AD-Wandlers nach dem Sägezahnverfahren sind		
		a)	automatische Polaritätsanzeige der angelegten Spannung ist möglich
		b)	die digitale Ausgangsgröße ändert sich mit der Eingangsgröße stetig ohne zyklusbedingte Sprünge
		c)	die Schaltung kommt mit einem internen Generator aus
12.	AD-Wandler werden in der Meßtechnik eingesetzt bei		
		a)	digitalen Frequenzzählern
		b)	digitalen Zeitmeßgeräten
		c)	digitalen Spannungsmessern

zu 10.	
	Die digitale Ausgangsgröße eines AD-Wandlers nach dem Säge- zahnverfahren ist abhängig von der Eingangsspannung, vom An- stieg der intern erzeugten Sägezahnspannung und von der intern erzeugten Impulsfrequenz.
zu 11.	Falsch wäre:
	Antwort b): Das Wandlerprinzip bedingt in jedem Falle einen Zählzyklus. Erst am Ende steht die Ausgangsgröße zur Verfügung. Antwort c): Die Schaltung benötigt zwei interne Spannungen: Sägezahnspannung, Rechteckspannung (Impulse). Beide werden
zu 12. ⊠ ⊠	in getrennten Generatoren erzeugt. Frequenz, Zeit und Spannung liegen am Eingang aller genannten Meßgeräte als analoge Größen. Für die gewünschte digitale Anzeige ist eine AD-Umwandlung erforderlich.

Zu Abschnitt 7

Datenübertragungstechnik*)

1.	Unter einem Binärschritt versteht man in der Datenübertragungstechnik		
			die Auswahl eines Zeichens aus zwei möglichen Zeichen ein Signal definierter Dauer, dem ein Kennzustand von zwei möglichen Zuständen zugewiesen werden kann
		c)	die Aufteilung eines Codes in Zweierschritte
2.	Beim	Syn	achronverfahren
		b)	werden alle Binärschritte parallel übertragen besteht Gleichlauf zwischen Sender und Empfänger der Binär- schritte werden Synchronisationsschritte am Ende jedes Zeichens ge- sendet, um Sender und Empfänger im Gleichlauf zu halten haben alle Schritte einen Informationsinhalt
3.	Beim	Sta	rt-Stop-Verfahren
		b)	wird der Gleichlauf zwischen Sender und Empfänger nur je- weils für die Dauer eines Zeichens hergestellt wird der Gleichlauf zwischen Sender und Empfänger nur für die Dauer eines Binärschrittes hergestellt wird am Anfang eines Datenblocks ein Startsignal und am Ende des Datenblocks ein Stop-Signal übermittelt leitet ein Startsignal die Datenübermittlung ein; ein Stop- Signal beendet die Datenübertragung
4.	Unter	"О	ff-line Verarbeitung" versteht man
		a)	die unmittelbare Datenverarbeitung, wobei keine Zwischenspeicherung auf mechanische Datenträger erfolgt
		b)	eine indirekte Datenverarbeitung, wobei die Daten gesammelt und zwischengespeichert werden, z. B. auf Lochkarten
		c)	eine Verarbeitung der Daten ohne Zwischenschaltung eines Datenübertragungsweges; die Daten entstehen am Sitz der EDV-Anlage

^{°)} Vgl. hierzu Abschnitt 7 in dem "Handbuch der Elektronik; Teil 2 — Digitaltechnik".

zu 1.	
	Ein Signal mit einer bestimmten Dauer, z. B. 20 ms, dem eindeutig ein Zustand von zwei möglichen Zuständen zugewiesen werden kann, bezeichnet man als Binärschritt.
	kami, bezeidilet iliali dis bildisdiritt.
zu 2.	
	Beim Synchronverfahren besteht zwischen Sender und Empfänger absoluter Gleichlauf. Zu diesem Zweck werden häufig Synchroni- sationsschritte übertragen. Bis auf die Synchronisationsschritte
	haben alle Schritte einen Informationsgehalt und tragen damit zur Nachrichtenübermittlung bei.
\boxtimes	
zu 3.	
	Der zur Abtastung eines Zeichens notwendige Gleichlauf zwischen Sender und Empfänger wird beim Start-Stop-Verfahren nur für
	die Dauer eines Zeichens hergestellt.
zu 4.	
	Werden die Daten vor ihrer Verarbeitung auf mechanische Daten- träger übertragen, gesammelt und somit zwischengespeichert,
\boxtimes	spricht man von "Off-line Verarbeitung".

5.	Ein Modem	ist

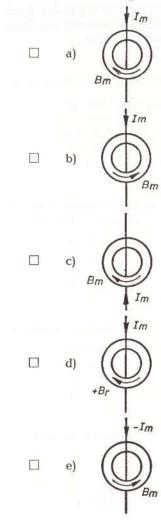
	a)	eine Datenübertragungseinrichtung zum Modulieren und De-
	y Di	modulieren der Signale der Datenendeinrichtungen
	b)	ein Gerät zur Anpassung der Datengeschwindigkeit an den
		Ubertragungsweg
П	(c)	ein Gerät zum Senden und Empfangen von Telegrafiezeichen

zu 5.	na manatata mili ad	Zu Abschnitt 8
	Ein Modem dient zur Anpassung der Signale eines Datenend-	
□ fr me t	gerätes an die Erfordernisse eines Datenübertragungsweges. Es wird bei Fernsprechleitungen und Breitbandleitungen erforderlich.	Magnetkerntechnik*)
	terment and community our uniform the father at the community of the commu	
		1. Als Spin bezeichnet man
		 □ a) die Richtung der magnetischen Kraft □ b) die Drehbewegung des Elektrons um die eigene Achse □ c) ein Werkzeug in der Elektronik
		2. Ferromagnetismus liegt vor, wenn
		 a) innerhalb einer vollständigen Elektronenschale unkompensierte Spins vorliegen b) Eisen in ein Magnetfeld gebracht wird □ c) Kupfer in ein Magnetfeld gebracht wird
		3. Ferrite sind
		 a) ferromagnetische Werkstoffe, bei denen die magnetischen Momente der einzelnen Atome antiparallel ausgerichtet sind b) ferromagnetische Werkstoffe, bei denen die magnetischen Momente der einzelnen Atome parallel ausgerichtet sind c) gesinterte keramische Werkstoffe aus Eisenoxid und zweiwertigen Metalloxiden
		4. Ferrite haben geringe Wirbelstromverluste, weil
		 a) die einzelnen Weißschen Bezirke nicht elektrisch leitend miteinander verbunden sind b) die Ummagnetisierungsarbeit gering ist c) die magnetischen Momente sich teilweise kompensieren

^{*)} Vgl. hierzu Abschnitt 8 in dem "Handbuch der Elektronik; Teil 2 — Digitaltechnik".

5. Reversible Vorgänge

		Ten
- Magnelkemeshrift		 b) bilden sich nach dem Wegnehmen des äußeren Feldes von selbst zurück
		 c) sind auf die Drehung der Spinmomente (Molekularmagnete) zurückzuführen
		d) bilden sich nach Wegnahme des äußeren Feldes nicht von
man between trybald J.		selbst zurück
Als Spin wird die Rotationsbewegung (Drehbewegung) der Elektronen um die gedachte eigene Achse bezeichnet. Durch sie entstatt in war werde der Margaret in der		
stent ein magnetisches Moment.	6. Irre	eversible Vorgänge
		 a) sind vorwiegend auf die Verschiebung der Blochwände zurück- zuführen
The 2 Authority and Property an		 b) bilden sich nach Wegnahme des äußeren Feldes von selbst zurück
Ferromagnetismus ist die Eigenschaft, die entsteht, wenn sich die magnetischen Momente der Spins innerhalb einer unvollständigen		 c) sind vorwiegend auf Drehung der Spinmomente (Elementar- dipole) zurückzuführen
Elektronenschale nicht aufheben.		 d) bilden sich nach Wegnahme des äußeren Feldes nicht von selbst zurück
to design to the second of the	7. Rin	gkerne für Speicherzwecke haben
Ferrite, d. h. Kerne aus ferrimagnetischem Material, sind gesinterte koramische Werkstoffe aus Fisenovid und zweiwertigen		a) eine flache Hystereseschleife mit geringer Remanenz b) eine rechteckige Hystereseschleife mit hoher Remanenz
Metolloxiden.	6	c) eine breite Hystereseschleife mit geringer Remanenz
the same of the sa		
	8. Bei	Speicherkernen soll
		a) der Anteil der irreversiblen Blochwandverschiebungen gegen-
The students with an extended arrest to the	111, 23	über den reversiblen Drehungen der Elementardipole groß sein
Ferrite haben einen hohen elektrischen spezifischen Widerstand.		 b) der Anteil der irreversiblen Blochwandverschiebungen gegen- über den reversiblen Drehungen der Elementardipole klein sein
elektrisch leitend miteinander verbunden sind.		c) sich die magnetische Induktion $+B_s$ bei einer Verringerung der Feldstärke von $+H_m$ auf $-H_m/2$ stark verändern
		d) sich die magnetische Induktion $+B_r$ bei einer Erregung mit $-H_m$ in $-B_s$ ändern
	Ferromagnetismus ist die Eigenschaft, die entsteht, wenn sich die magnetischen Momente der Spins innerhalb einer unvollständigen Elektronenschale nicht aufheben. Ferrite, d. h. Kerne aus ferrimagnetischem Material, sind gesinterte keramische Werkstoffe aus Eisenoxid und zweiwertigen Metolloxiden. Ferrite haben einen hohen elektrischen spezifischen Widerstand. Er erklärt sich damit, daß die einzelnen Weißschen Bezirke nicht	Als Spin wird die Rotationsbewegung (Drehbewegung) der Elektronen um die gedachte eigene Achse bezeichnet. Durch sie entsteht ein magnetisches Moment. 6. Irrestenden in magnetisches Moment. Ferromagnetismus ist die Eigenschaft, die entsteht, wenn sich die magnetischen Momente der Spins innerhalb einer unvollständigen Elektronenschale nicht aufheben. 7. Rinderte keramische Werkstoffe aus Eisenoxid und zweiwertigen Metolloxiden. 8. Bei der Ferrite haben einen hohen elektrischen spezifischen Widerstand. Er erklärt sich damit, daß die einzelnen Weißschen Bezirke nicht elektrisch leitend miteinander verbunden sind.


a) sind vorwiegend auf Blochwandverschiebungen zurückzufüh-

Unter reversible vorgänge ist zu verstehen, daß sich die Blochwände nach Wegnahme des äußeren Feldes von selbst wieder in ihre alte Position begeben. □ leite Position begeben. □ leite Position begeben leine Hystereseschleife leite Pystereseschleife leite Pystere	zu 5.		9.	Die w	aagerechten Achsen der Hystereseschleife
Suffirm		wände nach Wegnahme des äußeren Feldes von selbst wieder in			zuführen
Induktionsspannung, da sie mit höherer Induktion B (B _m) verlaufen 10. Das Rechteckverhältnis R _s eines Speicherkerns gibt Auskunft über	×	inre alte Position begeben.			zuführen
10. Das Rechteckverhältnis R, eines Speicherkerns gibt Auskunft über a					Induktionsspannung, da sie mit höherer Induktion B (B _m) ver-
□ a) die Breite der Hystereseschleife □ bi die Steilheit der senkrechten Flanken der Hystereseschleife □ bi die Steilheit der senkrechten Flanken der Hystereseschleife □ bi die Steilheit der waagerechten Flanken der Hystereseschleife □ bi der Steilheit der waagerechten Flanken der Hystereseschleife □ bi der Kern mit —H _m /2 erregt wird, soll □ a) der Remanenzustand +B _r möglichst erhalten bleiben □ bi der Kern vom positiven in den negativen Remanenzustand □ unkippen □ c) der Kern entmagnetisiert werden (B = 0), damit er später wieder durch +H _m magnetisiert werden kann 12. Die Hystereseverluste, das sind die zum Ummagnetisieren erforder- lichen Energien, sind abhängig von □ a) der Breite der Hystereseschleife allein (nur H) □ bi der Höhe der Hystereseschleife allein (nur H) □ bi der Höhe der Hystereseschleife allein (nur H) □ bi der Höhe der Hystereseschleife allein (nur B) □ der Breite der Hystereseschleife □ der Kern entmagnetisiert werden kann 12. Die Hystereseschleife allein (nur H) □ bi der Höhe der Hystereseschleife □ die Steilheit der senkrochten Flanken der Speicher werden kann 13. Speicherkerne mit kleinem Innendurchmesser und geringer Wandstärke □ a) lassen sich sehr gut verarbeiten □ b) haben eine kurze Umschaltzeit □ c) benötigen eine große Energie zum Umschalten □ d) brauchen einen höheren Magnetisierungsstrom als größere Kerne 14. Ringkerne werden zum Speichern der Information verwendet. Dabei □ a) muß sich der Kern während der Speicherzeit in einem äußeren Magnetield befinden □ b) ist während der Speicherzeit kein Strom in den Schreibdrähten erforderlich.			10.	Das R	echteckverhältnis R _s eines Speicherkerns gibt Auskunft über
Weißschen Bezirke. Dieser Vorgang ist nicht umkehrbar. □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	zu 6.				a) die Breite der Hystereseschleifeb) die Steilheit der senkrechten Flanken der Hystereseschleife
Weißschen Bezirke. Dieser Vorgang ist nicht umkehrbar. □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	M	Die Blochwände verschieben sich zu Lasten der benachbarten			
b) der Kern vom positiven in den negativen Remanenzzustand umkippen c) der Kern entmagnetisiert werden (B = 0), damit er später wieder durch +H _m magnetisiert werden kann 12. Die Hystereseverluste, das sind die zum Ummagnetisieren erforderlichen Energien, sind abhängig von der Höhe der Hystereseschleife allein (nur H) der Höhe der Hystereseschleife allein (nur B) der Metrialmenge allein der Produkt aus H _m × B _s (R = 1 angenommen) der Materialmenge allein der Materialmenge allein	23		11.	Wenn	ein Speicherkern mit —H _m /2 erregt wird, soll
umkippen c) der Kern entmagnetisiert werden (B = 0), damit er später wieder durch +H _m magnetisiert werden kann 12. Die Hystereseverluste, das sind die zum Ummagnetisieren erforderlichen Energien, sind abhängig von a) der Breite der Hystereseschleife allein (nur H) b) der Höhe der Hystereseschleife allein (nur B) c) dem Produkt aus H _m × B _s (R = 1 angenommen) d) der Materialmenge allein 13. Speicherkerne mit kleinem Innendurchmesser und geringer Wandstärke c) dem Auterialmenge allein 14. Ringkerne für Speicher Anteil der irreversiblen (nicht wiederholbaren) Blochwandverschiebungen gegenüber den reversiblen (wiederholbaren) Drehungen der Elementardipole groß sein. Dazu ist bei dem Zustand +B _r eine Erregung —H _m erforderlich, um den Zustand →B _s zu erreichen. □ muß sich der Kern während der Speicherzeit in einem äußeren Magnetfeld befinden □ b) ist während der Speicherzeit kein Strom in den Schreibdrähten erforderlich					
wieder durch +H m magnetisiert werden kann 12. Die Hystereseverluste, das sind die zum Ummagnetisieren erforderlichen Energien, sind abhängig von □ Ringkerne für Speicher- und Schaltzwecke haben eine Hysterese- □ schleife mit fast rechteckigem Verlauf. □ Ringkerne für Speicher- und Schaltzwecke haben eine Hysterese- □ schleife mit fast rechteckigem Verlauf. □ der Breite der Hystereseschleife allein (nur H) □ der Höhe der Hystereseschleife allein (nur H) □ der Materialmenge allein □ der Materialm					
Lichen Energien, sind abhängig von					
Bingkerne für Speicher- und Schaltzwecke haben eine Hystereseschleife mit fast rechteckigem Verlauf.			12.		
Ringkerne für Speicher- und Schaltzwecke haben eine Hysterese- schleife mit fast rechteckigem Verlauf. □ c) dem Produkt aus H _m × B _s (R = 1 angenommen) d) der Materialmenge allein □ 3. Speicherkerne mit kleinem Innendurchmesser und geringer Wandstärke □ a) lassen sich sehr gut verarbeiten □ b) haben eine kurze Umschaltzeit □ c) benötigen eine große Energie zum Umschalten □ b) haben eine höheren Magnetisierungsstrom als größere Kerne □ (wiederholbaren) Drehungen der Elementardipole groß sein. Dazu ist bei dem Zustand −B _s zu erreichen. □ Wiederholbaren Drehungen der Elementardipole groß sein. Dazu ist bei dem Zustand +B _r eine Erregung −H _m erforderlich, um den Zustand −B _s zu erreichen. □ Wingsich der Kern während der Speicherzeit in einem äußeren Magnetfeld befinden □ b) ist während der Speicherzeit kein Strom in den Schreibdrähten erforderlich	zu 7.				
 Schleife mit fast rechteckigem Verlauf. □ d) der Materialmenge allein □ 3. Speicherkerne mit kleinem Innendurchmesser und geringer Wandstärke □ a) lassen sich sehr gut verarbeiten □ b) haben eine kurze Umschaltzeit □ c) benötigen eine große Energie zum Umschalten □ d) brauchen einen höheren Magnetisierungsstrom als größere Kerne □ d) brauchen einen höheren Magnetisierungsstrom als größere Kerne □ d) brauchen einen höheren Magnetisierungsstrom als größere Kerne □ d) brauchen einen höheren Magnetisierungsstrom als größere Kerne □ d) brauchen einen höheren Magnetisierungsstrom als größere Kerne □ d) brauchen einen höheren Magnetisierungsstrom als größere Kerne □ d) brauchen einen höheren Magnetisierungsstrom als größere Kerne □ d) brauchen einen höheren Magnetisierungsstrom als größere Kerne □ d) brauchen einen höheren Magnetisierungsstrom als größere Kerne □ d) brauchen einen höheren Magnetisierungsstrom als größere Kerne □ d) brauchen einen höheren Magnetisierungsstrom als größere Kerne □ d) brauchen einen höheren Magnetisierungsstrom als größere Kerne □ d) brauchen einen höheren Magnetisierungsstrom als größere Kerne □ d) brauchen einen höheren Magnetisierungsstrom als größere Kerne □ d) brauchen einen höheren Magnetisierungsstrom als größere Kerne □ d) brauchen einen höheren Magnetisierungsstrom als größere Kerne □ d) brauchen einen höheren Magnetisierungsstrom als größere Kerne □ d) brauchen einen höheren Magnetisierungsstrom als größere Kerne □ d) brauchen einen höheren Magnetisierungstrom einen höheren Magnetisierungstro		Pingkerne für Speicher- und Schaltzwecke haben eine Hysterese-			
zu 8. Zu 8. Bei Speicherkernen soll der Anteil der irreversiblen (nicht wiederholbaren) Blochwandverschiebungen gegenüber den reversiblen (wiederholbaren) Drehungen der Elementardipole groß sein. Dazu ist bei dem Zustand +B _r eine Erregung —H _m erforderlich, um den Zustand —B _s zu erreichen. □ Wandstärke □ A lassen sich sehr gut verarbeiten □ b) haben eine kurze Umschaltzeit □ c) benötigen eine große Energie zum Umschalten □ d) brauchen einen höheren Magnetisierungsstrom als größere Kerne 13. Speicherkerne mit kleinem Innendurchmesser und geringer Wandstärke □ b) haben eine kurze Umschaltzeit □ c) benötigen eine große Energie zum Umschalten □ d) brauchen einen höheren Magnetisierungsstrom als größere Kerne 14. Ringkerne werden zum Speichern der Information verwendet. Dabei □ a) muß sich der Kern während der Speicherzeit in einem äußeren Magnetfeld befinden □ b) ist während der Speicherzeit kein Strom in den Schreibdrähten erforderlich	\boxtimes				
b) haben eine kurze Umschaltzeit c) benötigen eine große Energie zum Umschalten d) brauchen einen höheren Magnetisierungsstrom als größere Kerne werden zustand +Br eine Erregung —Hm erforderlich, um den Zustand —Bs zu erreichen. d) brauchen einen höheren Magnetisierungsstrom als größere Kerne 14. Ringkerne werden zum Speichern der Information verwendet. Dabei am muß sich der Kern während der Speicherzeit in einem äußeren Magnetfeld befinden muß sich der Kern während der Speicherzeit in einem äußeren Magnetfeld befinden b) ist während der Speicherzeit kein Strom in den Schreibdrähten erforderlich			13.	Speid	nerkerne mit kleinem Innendurchmesser und geringer Wandstärke
zu 8. □ Bei Speicherkernen soll der Anteil der irreversiblen (nicht wiederholbaren) Blochwandverschiebungen gegenüber den reversiblen □ (wiederholbaren) Drehungen der Elementardipole groß sein. Dazu ist bei dem Zustand +B _r eine Erregung —H _m erforderlich, um den Zustand —B _s zu erreichen. □ Magnetfeld befinden □ Magnetfeld befinden □ b) ist während der Speicherzeit kein Strom in den Schreibdrähten erforderlich					
 Bei Speicherkernen soll der Anteil der irreversiblen (nicht wiederholbaren) Blochwandverschiebungen gegenüber den reversiblen (wiederholbaren) Drehungen der Elementardipole groß sein. Dazu ist bei dem Zustand +Br eine Erregung —Hm erforderlich, um den Zustand —Bs zu erreichen. □ a) brauchen einen höheren Magnetisierungsstrom als größere Kerne 14. Ringkerne werden zum Speichern der Information verwendet. Dabei a) muß sich der Kern während der Speicherzeit in einem äußeren Magnetfeld befinden □ b) ist während der Speicherzeit kein Strom in den Schreibdrähten erforderlich 	0			100	
Kerne Ker					
ist bei dem Zustand +Br eine Erregung —Hm erforderlich, um den Zustand —Bs zu erreichen. □ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■		holbaren) Blochwandverschiebungen gegenüber den reversiblen			
Zustand —B _s zu erreichen. □ a) muß sich der Kern während der Speicherzeit in einem äußeren Magnetfeld befinden □ b) ist während der Speicherzeit kein Strom in den Schreibdrähten erforderlich		(wiederholbaren) Drehungen der Elementardipole groß sein. Dazu ist bei dem Zustand +B, eine Erregung —H, erforderlich, um den	14.	Ringk	erne werden zum Speichern der Information verwendet. Dabei
□ b) ist während der Speicherzeit kein Strom in den Schreibdrähten erforderlich					
□ erforderlich					
	×				20.0 P. C.
					c) muß während der Speicherzeit im Schreibdraht Strom fließen

zu 9.	
	Die angenähert waagerechten Achsen der Hystereseschleife sind vorwiegend auf die reversiblen Vorgänge im Ferritkern zurück-
	zuführen.
zu 10.	
	Das Rechteckverhältnis R_s einer Hystereseschleife eines Speicherkerns gibt Auskunft über die Steilheit der waagerechten Flanken dieser Kurve. Bei $R_s=1$ wären die Punkte B_r und B_s auf gleicher Höhe.
zu 11.	
	Wenn ein Speicherkern mit — $I_m/2$ erregt wird, soll der Remanenzzustand $\pm B_r$ möglichst erhalten bleiben.
zu 12.	
	Die zum Ummagnetisieren erforderliche Energie wird von der Hystereseschleife als Fläche dargestellt. Bei $R_s=1$ errechnet sie sich aus $H_m\times B_s.$
zu 13.	
	Die Umschaltzeit eines Kernes von $+B_s$ nach B_s ist etwa proportional dem Kerndurchmesser. Je kleiner der Kern, desto schneller kippt er um. Die erreichbaren Schaltzeiten liegen bei etwa 0,2 bis 10 μs .
zu 14.	
	Strom ist zum Erreichen eines bestimmten Zustandes notwendig. Während der Speicherzeit ist kein Strom in den Schreibdrähten
	erforderlich.
П	

- 15. Die Amplitude des Leseimpulses ist abhängig

 a) vom Remanenzzustand des Kerns $(+B_r \text{ oder } -B_r)$ b) von der Höhe des Stroms im Schreibdraht $(-I_m)$ c) von der Anzahl der Leseimpulse
 d) von der Stromrichtung im Schreibdraht $(+I_m \text{ oder } -I_m)$ e) vom Remanenzzustand und von der Stromrichtung
- 16. Welche Zeichnungen sind richtig?

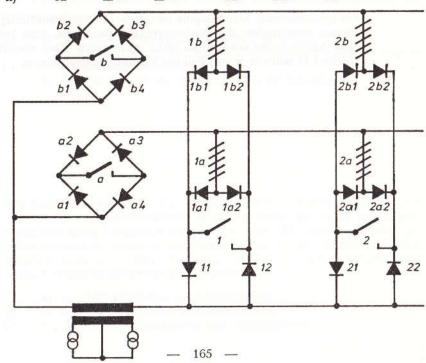
zu 15.		17. Nach dem Lesen eines Kerns befindet sich der Kern
	Die Amplitude des Leseimpulses ist abhängig von der Höhe des Stroms — I_m , d. h. von seiner Richtung, und vom Remanenzzustand des Kerns. Dieser liefert beim Umschalten eine Induktionsspannung.	 □ a) immer im positiven Remanenzzustand □ b) immer im negativen Remanenzzustand □ c) in dem Zustand, der vor dem Lesen vorhanden war
zu 16.		18. Bei der Koinzidenzansteuerung wird
\boxtimes	Die Zeichnungen unter a) und e) sind richtig. Das ergibt sich durch Anwendung der Korkenzieherregel. —Im bedeutet, daß der Strom entgegengesetzt zur eingezeichneten Richtung fließt.	 □ a) ein Kern angesteuert □ b) eine ganze Zeile angesteuert □ c) eine ganze Spalte angesteuert
		19. Beim Koinzidenzprinzip wird
		 □ a) ein Kern durch das Zusammentreffen zweier Ströme ange steuert □ b) ein Kern durch den Strom im Y-Draht ausgelesen □ c) eine ganze Zeile auf einmal ausgelesen □ d) nur die Information aus einem Kern zur Zeit ausgelesen
		20. Beim Lesen eines Kerns wird im Lesedraht ein Spannungsimpuls erzeugt Der Impuls beträgt beim Auslesen einer "1" etwa
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		21. Beim Auslesen einer "0" beträgt der erzeugte Spannungsimpuls etwa
		□ a) 0,01 V □ b) 0,1 V □ c) 1 V □ d) 0,001 V
		22. Wie lange etwa steht das Lesesignal zur Verfügung?
		□ a) 1 ms □ b) 10 ms □ c) 1 μs □ d) 100 ns

zu 17.		23. Das Lesesignal
	Nach dem Lesen befindet sich der Kern stets im Remanenzpunkt $-B_r$. War der Speicherinhalt eine "1", dann ist er beim Lesen gekippt, also von $+B_r$ nach $-B_r$. War der Inhalt eine "0", verharrt der Kern in seinem Zustand $-B_r$.	 a) hat während der ganzen Impulsdauer die gleiche Amplitude b) ist ein Nadelimpuls (schnelle Anstiegszeit, lange Abfallzeit) c) ist ein Höckerimpuls mit etwa gleicher Anstiegs- und Abfallzeit
zu 18.		24. Die Unterschiede beim Auslesen einer "0" gegenüber einer "1" sind
	Bei der Koinzidenzansteuerung wird durch die Stromführung in einem X- und in einem Y-Draht ein Kern angesteuert.	 a) die Amplitude beim Auslesen einer "0" ist größer b) die Amplitude beim Auslesen einer "0" ist kleiner c) das Maximum beim Auslesen einer "0" erscheint früher d) das Maximum beim Auslesen einer "0" erscheint später
zu 19. ⊠	Beim Koinzidenzprinzip wird ein Kern durch das Zusammentref-	25. Die abwechselnde Lage der Ferritkerne (90°-Drehung zueinander) einer Speichermatrix ist erforderlich, weil
	fen zweier Ströme in seinem Remanenzzustand beeinflußt. Es kann auch nur aus einem Kern z. Z. die Information herausgelesen werden.	 a) nach dem Koinzidenzprinzip gearbeitet wird b) sich eine solche Matrix besser flechten läßt c) sich dabei durch Nachbarkerne induzierte Störspannungen aufheben
zu 20.		 d) sich zusammen mit der Flechtweise des Lesedrahtes die indu- zierten Störspannungen der nicht ausgewählten Kerne an- nähernd aufheben
	ca. 100 mV	26. Eine Speicherzelle des Kernspeichers (Speicherblock) ist
		 a) ein durch entsprechende Ansteuerung ausgewählter Ferritkern einer Matrix b) eine Matrize des Speicherblocks
zu 21.		c) die Gesamtheit aller Spalten und Zeilen im Kernspeicher, in denen die Koordinaten (Lage) eines angesteuerten Ferritkerns übereinstimmen
	ca. $10 \text{mV} = 0.01 \text{V}$	d) die Gesamtheit aller Spalten im Kernspeicher
	1 2000 0 1 2	 Ein Speicher aus 24 Matrizen mit je 32 Zeilen und 32 Spalten hat ein Speichervermögen von
zu 22. □	etwas weniger als 1 μs	 □ a) 32 Worten zu 24 bits □ b) 24 Worten zu 32 bits □ c) 1024 Worten zu 32 bits
		 □ c) 1024 Worten zu 32 bits □ d) 1024 Worten zu 24 bits □ e) 768 Worten zu 24 bits □ f) 24576 Worten zu 32 bits

zu 23.		28. Der Inhibitdraht einer Matrix hat die Aufgabe,
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	Das Lesesignal ist ein Höckerimpuls mit etwa gleicher Anstiegs- und Abfallzeit.	 a) dem Flechtwerk einen statischen Halt zu geben b) durch die Parallelführung mit dem X-Draht vorhandene Störungen aufzunehmen und zur Anzeige zu bringen c) das Einschreiben einer "0" zu verhindern d) das Einschreiben einer "0" zu ermöglichen e) das Einschreiben einer "1" zu ermöglichen
	Die Amplitude beim Auslesen einer "0" ist kleiner als die bei einer "1". Auch das Maximum erscheint eher.	
		 Durch das Lesen wird die gespeicherte Information zerstört. Die Kerne der Speicherzelle befinden sich dann immer im Remanenzzustand —B_r, weil
zu 25.	Für den konstruktiven Aufbau, für die Flechtarbeit und für eine Zusammenschaltung einzelner Matrizen zu einem Speicherblock ist diese Kernanordnung günstiger. Hinzu kommt die Möglichkeit, den Lesedraht sehr einfach zu führen. Beide Faktoren ermöglichen eine weitgehende Unterdrückung von Störspannungen, so daß außer dem Nutzsignal nur noch eine verhältnismäßig kleine Störkomponente übrig bleibt.	 a) die Kerne selbständig in diesen Zustand kippen b) durch den Leseimpuls alle Kerne in den Zustand +B_r kippen c) durch den Leseimpuls alle Kerne in den Zustand kippen, den sie vor dem Eintreffen des Impulses inne hatten d) durch den Leseimpuls alle Kerne in den Zustand —B_r kippen bzw. darin verharren
zu 26.	Alle Zeilen- und Spaltendrähte (X- und Y-Drähte) jeder Matrize sind in einen Speicherblock in Reihe geschaltet. Bei Stromfluß in einem X- und Y-Draht wird in jeder Matrix also nur ein Kern erregt; bei a Matrizen also a Kerne. Die a erregten Kerne bilden dann die Speicherzelle, die ein Wort mit a Bits speichern kann.	30. Durch das Umkippen von Ferritkernzuständen werden in dem Lesedraht Störimpulse induziert. Diese Impulse haben infolge der großen Änderungsgeschwindigkeit des Kippvorganges schnell ihren Höchstwert erreicht. Wie unterscheidet man sie von einem Leseimpuls? □ a) durch die Art (Steilheit) ihrer Anstiegsflanke □ b) durch die Art (Steilheit) ihrer Abfallsflanke □ c) durch einen Vergleich mit einem Testimpuls □ d) durch einen zusätzlichen, genau definierten Impuls
zu 27.		Property valor backling alternated, many plants or religious. I a "first has hally have a financia and "I happen and a haplete lifter of the
	Eine Matrize mit 32 Zeilen und 32 Spalten enthält $32 \times 32 = 1024$ Adressen. Die gleichen Adressen von 24 Matrizen (eine Speicherzelle) stellen die Speichermöglichkeit eines Wortes dar. Es können also $32 \times 32 = 1024$ Wörter mit einer Länge von 24 bits gespeichert werden.	31. Ein Linearspeicher unterscheidet sich von einem Wortadressenspeicher a) durch seine nichtlineare Kennlinie b) überhaupt nicht c) durch seine geringen Abmessungen d) durch seine Bit-Kapazität - 159 -
	— 158 —	155

Der Inhibitidraht — auch Blockier- oder Informationsarlaht genacht — annt — soll durch das Führen eines Halbstromingulase das Einschreiben einer Null ermöglichen; d. h., der angesteuerte Kern mut totz der beiden Stromingulase das Führen einer Null ermöglichen; d. h., der angesteuerte Kern mut totz der beiden Stromingulase das Einschreiben einer Null ermöglichen; d. h., der angesteuerte Kern mut totz der beiden Stromingulase das Einschreiben einer Null ermöglichen; d. h., der angesteuerte Kern mut totz der beiden Stromingulase das Einschreiben einer Matrix — d. in den verschiedenen Stalten einer Matrix — d. in den verschiedenen Spalten einer Matrix — d. in den verschiedenen Spalten einer Matrix — d. in den verschiedenen Spalten einer Matrix — d. in einer Spalte einer Matrix — d. in einer Spalte einer Matrix — d. in einer Spalten einer Matrix — d. in einer Spalte einer Matrix — d	zu 28.		32.		einem Linearspeicher werden die Bits eines gespeicherten Wort
schreiben einer Null ermöglichen; d. h., der angesteuerte Kern muß trotz der beiden Strominusles l., 2 auf dem X. und auf dem V-Draht im Zustand —B, gehalten werden. Dazu wird die magnetische Wirkung des Stromes im X-Draht durch einen Strom in ent- gegengesetzter Richtung im Inhibitoraht aufgehoben. Es kann also nur der Strom L., 2 im V-Draht wirksam werden. Dieser reicht zum Xndern des Remanenzzustandes nicht aus. 3. Das Einschreiben einer Information im Linearspeicher erfolgt a) nach dem Linearprinzip b) in den verschiedenen Spalten einer Matrix c) in einer Steplte einer Matrix c) in einer Steplte einer Matrix c) in einer Spalten einer Matrix c) in einer Spalten einer Matrix c) in einer Steplte einer Matrix c) in einer Spalten einer Matrix c) in einer Zeile meiner Zeilen Falter c) in einer Zeile einer Matrix c) in einer Ze				unte	ergebracht
□ muß trotz der beiden Strominpulse lag/2 auf dem X- und auf dem Y-Draht im Zustand —B. gehalten werden. Dazu wird die magnetische Wirkung des Stromes im X-Draht durch einen Strom in entgegengesetzter Richtung in Inhibitidraht aufgehoben. Es kann also nur der Strom lag/2 im Y-Draht wirksam werden. Dieser reicht zum Xndern des Remanenzustandes nicht aus. 23. Das Einschreiben einer Information im Linearspeicher erfolgt a) nach dem Koinzidenzprinzip b) nach dem Koinzidenzprinzip b) nach dem Koinzidenzprinzip c) nach dem Auswahlprinzip c) nach dem Auswahlprinzip c) nach dem Auswahlprinzip dieser Zustand gespeichert (Kernzustand —B.), wird dieser Zustand bestätigt. Ist eine "1" gespeichert (Kernzustand —B.), wird dieser Zustand bestätigt. Ist eine "1" gespeichert (Kernzustand —B.), wird dieser Zustand gespeichert (Kernzustand —B.) wird die Jas Augment-Inhibitverfahren ohne Vormagnetisierung die lag/3-Methode die lag					a) in den verschiedenen Matrizen des Speicherblocks
V-Draht im Zustand —B. gehalten werden. Dazu wird die magnetische Wirkung des Stromes im X-Draht durch einen Strom in entgegengesetzter Richtung im Inhibitdraht aufgehoben. Es kann also nur der Strom I_m/2 im Y-Draht wirksam werden. Dieser reicht zum Andern des Remanenzzustandes nicht aus. 20 29. Auslesen bedeutet, einen Strom I_m/2 in entgegengesetzter Richtung wie beim Schreiben durch den X- und durch den Y-Draht zu schicken, jedoch keinen Strom im Informationsfraht [Inhibitdraht] fließen zu lassen. Ist eine _0" gespeichert (Kernzustand —B,), wird dieser Zustand besätägt. Ist eine _1" gespeichert (Kernzustand —B,), wird dieser Zustand besätägt. Ist eine _1" gespeichert (Kernzustand —B,), wird dieser Zustand geändert. Der Kern kippt nach —B, Dadurch wird ein Impuls im Lesedraht erzeugt, der ausgewertet wird. 20 30. 20 30. 31 32 Zum Einschreiben einer Information im Linearspeicher erfolgt 32 4. Zum Einschreiben bieten sich folgende Verfahren an. 33 2 3 4. Zum Einschreiben bieten sich folgende Verfahren an. 34 3 4. Zum Einschreiben bieten sich folgende Verfahren an. 35 4. Zum Einschreiben bieten sich folgende Verfahren an. 36 6 ist [a.] das Blockierverfahren 37 3 6 ab Blockierverfahren 38 6 ist [a.] das Blockierverfahren 39 6 ist [a.] das Blockierverfahren 30 6 ist [a.] das Blockierverfahren 30 6 ist [a.] das Blockierverfahren 31 6 ist [a.] das Augment-Inhibitverfahren 32 6 ist [a.] das Augment-Inhibitverfahren 33 6 ist [a.] das Blockierverfahren 34 7 2 in entgegengesetzter Richtung im Jach einen Zusten im Jach einen Zu					
tische Wirkung des Stromes im X-Draht durch einen Strom in entgegengesetzer Richtung im Inhibitarlaht aufgehoben. Es kann also nur der Strom I _m /2 im Y-Draht wirksam werden, Dieser reicht zum Xndern des Remanenzzustandes nicht aus. 22.9. 23.					
gegengesetzter Richtung im Inhibitidraht aufgehoben. Es kann also nur der Strom Lay'zi my-Prohit wirksam werden. Dieser reicht zum Andern des Remanenzzustandes nicht aus. 33. Das Einschreiben einer Information im Linearspeicher erfolgt					d) in den verschiedenen Spalten einer Matrix
Andern des Remanenzzustandes nicht aus. 33. Das Einschreiben einer Information im Linearspeicher erfolgt a) nach dem Koinzidenzprinzip b) nach dem Koinzidenzprinzip c) nach dem Koinzidenzprinzip d) das Augment-Inhibitverfahren an a) das Blockierverfahren d) das Augment-Inhibitverfahren c) das Augment-Inhibitverfahren c) die I _m /2-Methode d) die I _m /2-Me		gegengesetzter Richtung im Inhibitdraht aufgehoben. Es kann also			e) in einer Spalte einer Matrix
Diach dem Koinzidenzprinzip Diach dem Koinzidenzprinzip Diach dem Auswahlprinzip Diach dem Burtin D			33.	Das	Einschreiben einer Information im Linearspeicher erfolgt
C nach dem Auswahlprinzip					a) nach dem Linearprinzip
Auslesen bedeutet, einen Strom Im/2 in entgegengesetzter Richtung wie beim Schreiben durch den X- und durch den Y-Draht zu schicken, jedoch keinen Strom im Informationsdraht (Inhibitdraht) fließen zu lassen. Ist eine "o" gespeichert (Kernzustand —B), wird dieser Zustand bestätigt. Ist eine "i" gespeichert (Kernzustand —B), wird dieser Zustand bestätigt. Ist eine "i" gespeichert (Kernzustand —B, Dadurch wird ein Impuls im Lesedraht erzeugt, der ausgewertet wird. zu 30. Störimpulse werden von den Nutzimpulsen durch einen zusätzlichen Impuls, den Auftast- oder Strobeimpuls, im abfallenden Teil eines Nutz- und Störimpulses kenntlich gemacht. Der Strobeimpuls muß beendet sein, wenn die Rückflanke des Leseimpulses neue Störspannungen auslöst. Durch diesen Impuls wird der Leseverstärker im geeigneten Zeitpunkt geöffnet oder gesperrt. Ein Linearspeicher ist mit einem Wortadressenspeicher identisch. Ein Linearspeicher ist mit einem Wortadressenspeicher identisch.					
Auslesen bedeutet, einen Strom Im/2 in entgegengesetzter Richtung wie beim Schreiben durch den X- und durch den Y-Draht zu schicken, jedoch keinen Strom im Informationsdraht (Inhibitdraht) fließen zu lassen. Ist eine "0" gespeichert (Kernzustand —B.), wird dieser Zustand bestätigt. Ist eine "1" gespeichert (Kernzustand —B.), wird dieser Zustand geändert. Der Kern kippt nach —B., Dadurch wird ein Impuls im Lesedraht erzeugt, der ausgewertet wird. Zu 30. Störimpulse werden von den Nutzimpulsen durch einen zusätzlichen Impuls, den Auftast- oder Strobeimpuls, im abfallenden Teil eines Nutz- und Störimpulses kenntlich gemacht. Der Strobeimpuls muß beendet sein, wenn die Rückflanke des Leseimpulses neue Störspannungen auslöst. Durch diesen Impuls wird der Leseverstärker im geeigneten Zeitpunkt geöffnet oder gesperrt. Ein Linearspeicher ist mit einem Wortadressenspeicher identisch. Ein Linearspeicher ist mit einem Wortadressenspeicher identisch. Linearspeicher ist mit einem Wortadressenspeicher identisch.	211 29.				c) nach dem Auswahlprinzip
tung wie beim Schreiben durch den X- und durch den Y-Draht zu schicken, jedoch keinen Strom im Informationsdraht (Inhibitdraht) fließen zu lassen. Ist eine "0" gespeichert (Kernzustand—B., wird dieser Zustand bestätigt. Ist eine "1" gespeichert (Kernzustand—Br. Dadurch wird ein Impuls im Lesedraht erzeugt, der ausgewertet wird. zu 30. zu 30. zu 30. Störimpulse werden von den Nutzimpulsen durch einen zusätzlichen Impuls, den Auftast- oder Strobeimpuls, im abfallenden Teil eines Nutz- und Störimpulses kenntlich gemacht. Der Strobeimpuls muß beendet sein, wenn die Rückflanke des Leseverstärker im geeigneten Zeitpunkt geöffnet oder gesperrt. zu 31. Ein Linearspeicher ist mit einem Wortadressenspeicher identisch. tung wie beim Schreiben durch den X- und durch inhibitdraht (Inhibitdraht) inließen zu alsas Blockierverfahren das Augment-Inhibitverfahren das Augment-Inhibitverfahren ohne Vormagnetisierung h das Augment-Inhibitverfahren ohne Vormagnetisierung h das Augment-Inhibitverfahren ohne Vormagnetisierung a) vom Speichersystem und von der Speichergröße b) von der Stromversorgung (Gleich- oder Wechselstrom) c) vom Speicheraufbau d) vom Ger Zugriffszeit e) von der Zugriffszeit e) von der Zugriffszeit muß die notwendige Adresse enthalten, um einen ganz bestimmten Kernanzusteuern? 36. Eine Speichermatrix besteht aus 64 Spalten und 64 Zeilen. Wieviel Bitmuß die notwendige Adresse enthalten, um einen ganz bestimmten Kernanzusteuern? a) 8 Bits b) 10 Bits c) 12 Bits		Auslesen bedeutet, einen Strom I., 2 in entgegengesetzter Rich-	34	711111	Fineshroiban bioton sich folganda Varfahren an
schicken, jedoch keinen Strom im Informationsdraht (Inhibitdraht) Iließen zu lassen. Ist eine "0" gespeichert (Kernzustand —B₁), wird dieser Zustand bestätigt. Ist eine "1" gespeichert (Kernzustand +B₁), wird dieser Zustand geändert. Der Kern kippt nach —B₂, Dadurch wird ein Impuls im Lesedraht erzeugt, der ausgewertet wird. Zu 30. Störimpulse werden von den Nutzimpulsen durch einen zusätz- lichen Impuls, den Auftast- oder Strobeimpuls, im abfallenden Teil eines Nutz- und Störimpulses kenntlich gemacht. Der Strobe- impuls muß beendet sein, wenn die Rückflanke des Leseimpulses neue Störspannungen auslöst. Durch diesen Impuls wird der Lese- verstärker im geeigneten Zeitpunkt geöffnet oder gesperrt. Sin Linearspeicher ist mit einem Wortadressenspeicher identisch. Ein Linearspeicher ist mit einem Wortadressenspeicher identisch. Schieken, jedoch keinen Impuls die Adresse enthalten, um einen ganz bestimmten Kern anzusteuern? d das Augment-Inhibitverfahren d die "1/3-Methode d die "1/3-			54.	Zum	Emschreiben bieten sich folgende Verfahren an
Störimpulse werden von den Nutzimpulsen durch einen zusätzlichen Impuls, den Auftast- oder Strobeimpuls, im abfallenden Teil eines Nutz- und Störimpulses kenntlich gemacht. Der Kore stept noder gesperrt. Störimpulse werden zeitgunkt geöffnet oder gesperrt. Störimpulse werden zeitgunkt geöffnet oder gesperrt. Störimpulse werden zeitgunkt geöffnet oder gesperrt. Störimpulsen durch einen zusätzlichen Impuls, den Auftast- oder Strobeimpuls, im abfallenden Teil eines Nutz- und Störimpulses kenntlich gemacht. Der Strobeimpuls wird der Leseverstärker im geeigneten Zeitpunkt geöffnet oder gesperrt. Störimpulse werden zeitgunkt geöffnet oder gesperrt. Störimpulse werden zeitgunkt geöffnet oder gesperrt. Störimpulse werden zeitgunkt geöffnet oder gesperrt. Störimpulse werden zu 31. Sin Linearspeicher ist mit einem Wortadressenspeicher identisch. Sin Linearspeicher zu 31. Sin Linearspeicher ist mit einem Wortadressenspeicher identisch. Sin Linearspeicher zu 31. Sin Linearspeicher ist mit einem Wortadressenspeicher identisch. Sin Linearspeicher zu 31. Sin Linearspeicher					
dieser Zustand bestätigt. Ist eine "1" gespeichert (Kernzustand +Br), wird dieser Zustand geändert. Der Kern kippt nach —Br. Dadurch wird ein Impuls im Lesedraht erzeugt, der ausgewertet wird. C das Augment-Inhibitiverfahren die Im/3-Methode die Im/3-Methode die Im/3-Methode die Im/3-Methode das Augment-Inhibitiverfahren ohne Vormagnetisierung h) das Augment-Inhibitiverfahren mit Vormagnetisierung das Augment-Inhibitiverfahren mit Vormagnetisierung h) das Augment-Inhibitiverfahren mit Vormagnetisierung das Augment-Inhibitiverfahren mit Vormagnetisierung das Augment-Inhibitiverfahren ohne Vormagnetisierung das Augment-Inhibitiverfahren mit Vormagnetisierung das Augment-Inhibitiverfahren ohne Vormagnetisierung vor folgenden Faktoren abhängig a) vom Speichersystem und von der Speichergröße von der Stromversorgung (Gleich- oder Wechselstrom) c) vom Speicheraufbau d) von der Zugriffszeit d) von der Zugri					
+B _r), wird dieser Zustand geändert. Der Kern kippt nach —B _r . Dadurch wird ein Impuls im Lesedraht erzeugt, der ausgewertet wird. □ die I _m /2-Methode □ die I _m /3-Methode □ das Augment-Inhibitverfahren ohne Vormagnetisierung □ das Augment-Inhibitverfahren mit Vormagnetisierung □ h) das Augment-Inhibitverfahren mit Vormagnetisierung □ a) vom Speichersystem und von der Speichergröße □ b) von der Stromversorgung (Gleich- oder Wechselstrom) □ c) vom Speicheraufbau □ die I _m /2-Methode □ die I _m /3-Methode □ does neares	\boxtimes				
Dadurch wird ein Impuls im Lesedraht erzeugt, der ausgewertet wird. die Im/3-Methode					
wird. f) das Augment-Inhibitverfahren ohne Vormagnetisierung g) das Augment-Inhibitverfahren ohne Vormagnetisierung h) das Augment-Inhibitverfahren ohne Vormagnetisierung h) das Augment-Inhibitverfahren ohne Vormagnetisierung das Augment-Inhibitverfahren ohte					
h) das Augment-Inhibitverfahren mit Vormagnetisierung 35. Auswahlschaltungen der Adressenansteuerung sind in ihrer Art vor folgenden Faktoren abhängig 35. Auswahlschaltungen der Adressenansteuerung sind in ihrer Art vor folgenden Faktoren abhängig a) vom Speichersystem und von der Speichergröße b) von der Stromversorgung (Gleich- oder Wechselstrom) c) vom Speicheraufbau c) vom Speicheraufbau d) von der Zugriffszeit d) von der Zugriffszeit d) von der Zugriffszeit e) von der Betriebstemperatur 36. Eine Speichermatrix besteht aus 64 Spalten und 64 Zeilen. Wieviel Bitmuß die notwendige Adresse enthalten, um einen ganz bestimmten Kerranzusteuerri a) 8 Bits b) 10 Bits c) 12 Bits					
zu 30. Störimpulse werden von den Nutzimpulsen durch einen zusätzlichen Impuls, den Auftast- oder Strobeimpuls, im abfallenden Teil eines Nutz- und Störimpulses kenntlich gemacht. Der Strobeimpuls muß beendet sein, wenn die Rückflanke des Leseimpulses neue Störspannungen auslöst. Durch diesen Impuls wird der Leseverstärker im geeigneten Zeitpunkt geöffnet oder gesperrt. zu 31. Ein Linearspeicher ist mit einem Wortadressenspeicher identisch. Ein Linearspeicher ist mit einem Wortadressenspeicher identisch. 35. Auswahlschaltungen der Adressenansteuerung sind in ihrer Art vor folgenden Faktoren abhängig a) vom Speichersystem und von der Speichergröße b) von der Stromversorgung (Gleich- oder Wechselstrom) c) vom Speicheraufbau c) von der Zugriffszeit c) von der Betriebstemperatur 36. Eine Speichermatrix besteht aus 64 Spalten und 64 Zeilen. Wieviel Bits muß die notwendige Adresse enthalten, um einen ganz bestimmten Kern anzusteuern? a) 8 Bits b) 10 Bits c) 12 Bits					
Störimpulse werden von den Nutzimpulsen durch einen zusätz- Iichen Impuls, den Auftast- oder Strobeimpuls, im abfallenden Teil eines Nutz- und Störimpulses kenntlich gemacht. Der Strobe- impuls muß beendet sein, wenn die Rückflanke des Leseimpulses neue Störspannungen auslöst. Durch diesen Impuls wird der Lese- verstärker im geeigneten Zeitpunkt geöffnet oder gesperrt. 36. Eine Speichermatrix besteht aus 64 Spalten und 64 Zeilen. Wieviel Bits muß die notwendige Adresse enthalten, um einen ganz bestimmten Kerr anzusteuern? □ Ein Linearspeicher ist mit einem Wortadressenspeicher identisch. □ a) 8 Bits □ b) 10 Bits □ c) 12 Bits					h) das Augment-Inhibitverfahren mit Vormagnetisierung
Störimpulse werden von den Nutzimpulsen durch einen zusätz- Iichen Impuls, den Auftast- oder Strobeimpuls, im abfallenden Teil eines Nutz- und Störimpulses kenntlich gemacht. Der Strobe- impuls muß beendet sein, wenn die Rückflanke des Leseimpulses neue Störspannungen auslöst. Durch diesen Impuls wird der Lese- verstärker im geeigneten Zeitpunkt geöffnet oder gesperrt. 36. Eine Speichermatrix besteht aus 64 Spalten und 64 Zeilen. Wieviel Bits muß die notwendige Adresse enthalten, um einen ganz bestimmten Kerr anzusteuern? □ Ein Linearspeicher ist mit einem Wortadressenspeicher identisch. □ a) 8 Bits □ b) 10 Bits □ c) 12 Bits			35.	Aus	wahlschaltungen der Adressenansteuerung sind in ihrer Art von
Storimpulse werden von den Nutzimpulsen durch einen zusätz- lichen Impuls, den Auftast- oder Strobeimpuls, im abfallenden Teil eines Nutz- und Störimpulses kenntlich gemacht. Der Strobe- impuls muß beendet sein, wenn die Rückflanke des Leseimpulses neue Störspannungen auslöst. Durch diesen Impuls wird der Lese- verstärker im geeigneten Zeitpunkt geöffnet oder gesperrt. 36. Eine Speichermatrix besteht aus 64 Spalten und 64 Zeilen. Wieviel Bits muß die notwendige Adresse enthalten, um einen ganz bestimmten Kerr anzusteuern? a 8 Bits b 10 Bits c 12 Bits	zu 30.		1797	folg	enden Faktoren abhängig
□ lichen Impuls, den Auftast- oder Strobeimpuls, im abfallenden □ Teil eines Nutz- und Störimpulses kenntlich gemacht. Der Strobe- impuls muß beendet sein, wenn die Rückflanke des Leseimpulses neue Störspannungen auslöst. Durch diesen Impuls wird der Lese- verstärker im geeigneten Zeitpunkt geöffnet oder gesperrt. 36. Eine Speichermatrix besteht aus 64 Spalten und 64 Zeilen. Wieviel Bits muß die notwendige Adresse enthalten, um einen ganz bestimmten Kerr anzusteuern? □ Ein Linearspeicher ist mit einem Wortadressenspeicher identisch. □ a) 8 Bits □ b) 10 Bits □ c) 12 Bits		Ctäringulas worden von den Nutsingulass durch sinen multi-			
 □ Teil eines Nutz- und Störimpulses kenntlich gemacht. Der Strobeimpuls muß beendet sein, wenn die Rückflanke des Leseimpulses neue Störspannungen auslöst. Durch diesen Impuls wird der Leseverstärker im geeigneten Zeitpunkt geöffnet oder gesperrt. □ Zu 31. □ Ein Linearspeicher ist mit einem Wortadressenspeicher identisch. □ Bits □ C) Vom Spercheraufbat □ Von der Zugriffszeit □ von der Betriebstemperatur □ Speichermatrix besteht aus 64 Spalten und 64 Zeilen. Wieviel Bits muß die notwendige Adresse enthalten, um einen ganz bestimmten Kerr anzusteuern? □ a) 8 Bits □ b) 10 Bits □ c) 12 Bits 					
 impuls muß beendet sein, wenn die Rückflanke des Leseimpulses neue Störspannungen auslöst. Durch diesen Impuls wird der Leseverstärker im geeigneten Zeitpunkt geöffnet oder gesperrt. Zu 31. Ein Linearspeicher ist mit einem Wortadressenspeicher identisch. □ Bits □ Bits □ C) 12 Bits 					
neue Störspannungen auslöst. Durch diesen Impuls wird der Leseverstärker im geeigneten Zeitpunkt geöffnet oder gesperrt. 36. Eine Speichermatrix besteht aus 64 Spalten und 64 Zeilen. Wieviel Bits muß die notwendige Adresse enthalten, um einen ganz bestimmten Kerr anzusteuern? □ Ein Linearspeicher ist mit einem Wortadressenspeicher identisch. □ a) 8 Bits □ b) 10 Bits □ c) 12 Bits					d) von der Zugriffszeit
36. Eine Speichermatrix besteht aus 64 Spalten und 64 Zeilen. Wieviel Bits muß die notwendige Adresse enthalten, um einen ganz bestimmten Kerr anzusteuern? □ Ein Linearspeicher ist mit einem Wortadressenspeicher identisch. □ a) 8 Bits □ b) 10 Bits □ c) 12 Bits		neue Störspannungen auslöst. Durch diesen Impuls wird der Lese-			e) von der Betriebstemperatur
zu 31. □ Ein Linearspeicher ist mit einem Wortadressenspeicher identisch. □ a) 8 Bits □ b) 10 Bits □ c) 12 Bits		Totalia in goodiaa Dolpanii goomo odol goopolii	36	Fine	Speichermatrix besteht aus 64 Spalten und 64 Zeilen, Wiewiel Rit
zu 31. □ Ein Linearspeicher ist mit einem Wortadressenspeicher identisch. □ b) 10 Bits □ c) 12 Bits			0.0.		
□ b) 10 Bits □ c) 12 Bits	zu 31.				
□ b) 10 Bits □ c) 12 Bits		Ein Linearspeicher ist mit einem Wortadressenspeicher identisch.			a) 8 Bits
□ c) 12 Bits					

20		einer Matrize befindet sich der Kern, wenn die Bitfolge 0011000111 ist?
zu 32.	Die einzelnen Bits eines gespeicherten Wortes werden nicht wie im Koinzidenzspeicher in den verschiedenen Matrizen des Speicherblocks gespeichert. Sie werden im Linearspeicher in einer Reihe (Zeile) einer Matrize nebeneinander angeordnet. Die Anzahl der Bits pro Wort ist damit durch die Anzahl der Kerne pro Zeile bestimmt und nicht durch die Anzahl der Matrizen im Block.	□ a) Zeile 12; Spalte 28 □ b) Zeile 6; Spalte 7 □ c) Zeile 7; Spalte 6 □ d) Zeile 28; Spalte 12 38. Bei der Bitfolge 0011000111 haben Sie die Zeile und die Spalte ermittelt Wie lautet die Adresse? □ a) 42 □ b) 67
	Das Einschreiben erfolgt durch einen gleichzeitigen Impuls der Wortleitung (X-Leitung) und der Informationsleitung (Y-Leitung); Koinzidenzprinzip.	c) 199 d) 76
zu 34.		
	Alle Lösungen sind richtig bzw. teilweise identisch. (vgl. hierzu die Tabelle 68 auf S. 153 des "Handbuchs der Elektronik; Teil 2 — Digitaltechnik")	39. Wieviel Treiber sind bei einer Matrix nach dem 4-Dr-Koinzidenzprinzip mit 32 Zeilen und 32 Spalten erforderlich?
		□ a) 1024 □ b) 32 □ c) 64 □ d) 128
zu 35.		40. Der Aufwand an Schaltelementen zur Ansteuerung der einzelnen Kerne soll so gering wie möglich gehalten werden. Dabei bieten sich folgende günstige Einflüsse an
	Die Art der Ansteuer- und Auswahlschaltungen ist von der Größe des Speichers, von der verlangten Arbeitsgeschwindigkeit und vom Betriebstemperaturbereich abhängig.	 a) Gewichtsersparnis b) geringere Wärmeabgabe c) gleiche Größe der Zeilen- und Spaltenströme d) Angleichen von Potentialschwellen der einzelnen Bauelemente e) bessere zeitliche Ausnutzung der Transistoren
zu 36.		41. In welchem Kern einer Matrix mit 32 Zeilen und 32 Spalten befindet sich die Adresse 819?
	Die notwendige Adresse besteht aus 12 bits. Es können $64 \times 64 = 4096$ bits gespeichert werden. $4096 = 2^{12}$.	 □ a) Zeile 9; Spalte 19 □ b) Zeile 19; Spalte 9 □ c) Zeile 18; Spalte 25 □ d) Zeile 25; Spalte 18
	400	


zu 37.	
	Bei der Bitfolge 0011000111 geben die ersten 5 Bits die Zeile, die zweiten 5 Bits die Spalte an.
	Zeile — $00110 = 6$ Spalte — $00111 = 7$
zu 38.	
	Die Dezimalzahl 199 wird als Dualzahl wie folgt ermittelt:
zu 39.	Es werden für jede Zeile und Spalte je ein Treiber benötigt, also $32+32=64$ Treiber.
zu 40.	Die Zusammenfassung der Zeilen und Spalten in Gruppen bringt eine erhebliche Aufwandsersparnis an Treiberschaltungen mit sich; d. h., die Wärmeentwicklung ist geringer. Bei jedem Schreib- oder Lesevorgang sind die Ströme in den Zeilen- und Spalten- drähten genau gleich, da sie aus den gleichen Treibern (Transistor- verstärker) stammen. Die gegenseitige Beeinflussung (Kopplung) der erforderlichen Stromkreise wird durch Dioden und Trenn- trafos verhindert.
zu 41.	Der betreffende Kern (Adresse 819) läßt sich wie folgt ermitteln: 819 = 11001 10010 25 18 Zeile Spalte
	The state of the s

164 —

- 42. In Auswahlschaltungen (z. B. Abb. 298, 299 und 300 des Handbuchs "Digitaltechnik") werden Dioden in die Zuleitungen der Spaltendrähte geschaltet. Die Aufgabe dieser Dioden ist, a) eine unterschiedliche Potentialschwelle zu erreichen b) die Spaltendrähte zu entkoppeln c) unerwünschte Querströme zu vermeiden
- d) Impulse gleichzurichten 43. Um die Anzahl der Transistoren und die damit verbundenen Potentialschwierigkeiten zu verringern, werden u. a. die Treiberdrähte über Diodenbrücken angesteuert.

Prüfen Sie nachstehende Schaltung auf richtige Polung der Dioden.

	Diode	richtig	falsch	Diode	richtig	falsch
a)	a1			b1		
b)	a2			b2		
c)	a3			b3		
d)	a4			b4		
e)	1a1			1b1		
f)	1a2			1b2		
g)	11			21		
h)	12			22		

zu 42. □ Die Dioden sind zur Entkopplung notwendig. Sie sollen verhindern, daß parallelliegende Spaltendrähte ohne direkte Ansteuerung stromführend werden.	44. Der Aufwand an Bauelementen für die Adressenansteuerung kann durch die Verwendung von Schaltmatrizen (Wählermatrizen) gemindert werden. Nach welchem Verfahren ist die Ansteuerung solcher Matrizen möglich? □ a) Koinzidenzprinzip □ b) Antikoinzidenzprinzip □ c) Inhibitprinzip □ d) Antiinhibitprinzip
	e) Prinzip der Gleichstromvormagnetisierung
zu 43.	
Diode richtig falsch Diode richtig falsch a1 □ b1 □	45. Bei der Ansteuerung einer Matrix mit Gleichstromvormagnetisierung werden alle Kerne durch eine vierte Wicklung so vormagnetisiert, daß sie sich weit in der negativen Sättigung befinden. Welche Größe müssen
12 🛛 🗆 22 🖾 🗆	die Ansteuerströme haben, um eine "1" einschreiben zu können? Sie
Ein ankommender Stromimpuls könnte bei dieser Anordnung der Dioden ungehindert die Diodenbrücke b passieren. Eine beson- dere Ansteuerung wäre somit nicht erforderlich. Über die Diode 1b1 und 11 wäre in jedem Fall der Stromkreis geschlossen.	müssen sein a) gleich dem Vormagnetisierungsstrom (igleich) b) entgegengesetzt gleich dem Vormagnetisierungsstrom (-igleich) c) doppelt so groß wie der igleich d) doppelt so groß wie der igleich, aber entgegengesetzt
	46. Der Leseverstärker muß das Nutzsignal vom Störsignal trennen. Am Ausgang eines Leseverstärkers wird nur dann ein Signal erscheinen, wenn der obere Transistor (vgl. hierzu Abb. 308a des Handbuchs) geöffnet hat und die weiteren Voraussetzungen für den unteren Transistor gegeben sind. Der obere Transistor wird durch einen Strobeimpuls leitend. Wann ist dieser Impuls erforderlich?
	 a) vor dem Eintreffen des Leseimpulses b) nach dem Eintreffen des Leseimpulses □ c) während des Eintreffens des Leseimpulses
166	- 167 -

zu 44.	Das Antikoinzidenzprinzip und das Prinzip der Ansteuerung mit Gleichstromvormagnetisierung nutzen das Lenzsche Gesetz aus. Durch stromrichtungsabhängige Ummagnetisierung von Ringker- nen wird in der Ausgangswicklung eine Spannung induziert.	stimmen; hierbei wird er a) nur zum Lesen einer Information vom Strom durchflossen b) nur zum Schreiben einer Information vom Strom durchflossen c) sowohl beim Lesen als auch beim Schreiben vom Strom durchflossen
		48. Durch den Inhibitdraht eines Koinzidenzspeichers fließt der Strom □ a) beim Lesen □ b) beim Schreiben □ c) während der Speicherzeit
zu 45.	Die Summe der X- und Y-Ströme (Koordinatenströme) muß gleich oder größer sein als der Vormagnetisierungsstrom und entgegengesetzt gerichtet, da der Kern sicher aus seinem Zustand — B_r in den Zustand $+B_r$ gekippt werden muß.	49. Richtung und Größe des Stromes im Inhibitdraht sind □ a) + Im □ b) — Im □ c) + Im/2 □ d) — Im/2
zu 46. □ □	Der Auftastimpuls trifft während des Eintreffens des Leseimpulses ein, wenn eventuelle Störspannungen abgeklungen sind und der Nutzimpuls seinen größten Wert erreicht hat.	50. Bei Schaltkernen werden Ferrite mit möglichst hoher Remanenz und geringer Koerzitivfeldstärke verwendet, damit a) der Kern schneller umschaltet b) die Spannungsamplitude groß wird c) die Ummagnetisierungsenergie gering ist d) der Kern nicht durch Fremdfelder beeinflußt werden kann e) die Ringe möglichst kleine Abmessungen haben können
	→ 168 —	169

47. Der Informationstreiber eines Kernspeichers soll die Information be-

zu 47.	
	Nur beim Einschreiben einer Information "0" wird der Informationsschreiber leitend.
	Der von ihm angesteuerte Draht ist der Inhibit- oder Blockierdraht.
zu 48.	
	Durch den Inhibitdraht fließt beim Einschreiben einer "0" Strom.
zu 49.	
	Der Strom soll das Umklappen des angesteuerten Kerns verhindern. Er beträgt $-\frac{\text{Im}}{2}$
	dern. Er beträgt — 2
200	
zu 50.	
	Bei Schaltkernen werden Ferrite mit möglichst hoher Remanen: und geringer Koerzitivfeldstärke verwendet, damit eine große Feldänderung (Zustand $+B_r$ ändert sich in $-B_r$) eintritt und folg lich eine hohe Spannungsamplitude erzeugt wird.

— 170 —

51. Bei welchen Zeichnungen ist die Richtung des angegeben?	s Stromimpulses I ₂ richtig
□ a) □ b) □ c) □ d) □ e) □ f)	
must as you (a)	b) I ₁
I ₁	-
	12
c)	d)
I ₂	I1
I,	12
e)	f) I ₁
I2	I ₂
	,,,,,

zu 51.	Richtig ist:	
	a)	
	c)	
	e)	
	TOTAL MODES TO THE STATE OF THE	

Diese Lösungen ergeben sich durch Anwendung des Lenzschen Gesetzes. Danach müßte der durch die Induktionsänderung (hervorgerufen durch I_1) erzeugte Strom I_2 diese Änderung zu verhindern versuchen. Erzeugt I_1 z. B. ein Magnetfeld nach oben (Spiegelsymbolik), so müßte der Strom I_2 ein Magnetfeld nach unten erzeugen.

Zu Abschnitt 9

1 Fine FDV-Anlage kann

Grundsätzliches über EDV-Anlagen*)

1.	Lille	-17	-Amage Kami
		b)	nur Zahlen verarbeiten nur Buchstaben und Zeichen verarbeiten Zahlen sowie Buchstaben und Zeichen verarbeiten
2.	Das R	ech	nen in einer EDV-Anlage beruht auf
		b)	Zählvorgängen nach einem festen Programm Zählvorgängen nach einem veränderbaren Programm Verknüpfungen nach den Regeln der mathematischen Logik und einem von dem Benutzer der Anlage vorzugebenden Programm
		d)	logischen Verknüpfungen nach einem festen Programm
3.	Ein A	nal	ogrechner
		b)	benutzt zur Rechnung nur Zahlen benutzt zur Rechnung Zahlen und Buchstaben verknüpft die zu berechnenden Größen direkt oder hierzu analoge Größen
4.			ne große Rechengenauigkeit gefordert, so wird ein Digital- eenutzt, weil
		b)	hier ein Zahlensystem vorhanden ist hier das Rechnen auf physikalische Gesetze zurückgeführt wird bei vertretbarem Aufwand mit hoher Stellenzahl gearbeitet werden kann
		d)	Analogrechner mit entsprechend hoher Genauigkeit zu teuer sind

^{*)} Vgl. hierzu Abschnitt 9 in dem "Handbuch der Elektronik; Teil 2 — Digitaltechnik".

Ziffern, nennt man

		 □ b) alphanumerisches Wort □ c) alphamerisches Wort
zu 1.		6. Das Alphabet ist eine Zusammenfassung
	Eine EDV-Anlage kann sowohl Zahlen als auch Buchstaben und Sonderzeichen verarbeiten. Man spricht deshalb auch von Daten- verarbeitungsanlagen.	 □ a) aller Buchstaben □ b) aller Zeichen □ c) aller Buchstaben und Ziffern, die in einer EDV-Anlage verwendet werden
0	A Design of an India August annual angular Seal T. N.	7. Bei einer Gleitkommazahl
zu 2.	Eine moderne EDV-Anlage wird durch ein vom Benutzer vorgegebenes Programm gesteuert, das vor der eigentlichen Rechnung in das Speicherwerk der EDV-Anlage abgespeichert wird. Eine EDV-Anlage arbeitet nach den Regeln der mathematischen Logik; das Rechnen beruht nicht auf Zählvorgängen.	 a) kann im Gegensatz zu einer Festkommazahl das Komma während der Rechnung verschoben werden b) kann die Stellung des Kommas vor der Rechnung frei gewählt werden c) ist die Stellung des Kommas in der Größe der Charakteristik enthalten
		8. Die Ziffernfolge 27633752 hat als Gleitkommazahl folgende Bedeutung:
zu 3. □ □ □	Beim Analogrechner werden entweder die Größen selbst oder hierzu analoge Größen verknüpft. Bei einer Multiplikation mit einem Rechenstab werden z.B. Strecken addiert, die den Loga- rithmen analog sind. Beim Analogrechner verwendet man dazu	□ a) 27633752 □ b) 0,27633752 □ c) 27,6337 □ d) 27,633752
	geeignete physikalische Größen.	 Bei dezimaler Zahlendarstellung in einer EDV-Anlage wird häufig ge- arbeitet
zu 4.	die bile in Jestachen healginningement bliebt sein beit? A	□ a) im Parallelbetrieb □ b) im Serienparallelbetrieb □ c) im Serienbetrieb
	Gute Aanalogrechner rechnen mit einer Genauigkeit von drei Dezimalstellen, Digitalrechner mit einer Genauigkeit bis zu etwa 12 Dezimalstellen. Dem Analogrechner sind durch die mit Fehlern behafteten Verknüpfungseinrichtungen in der Genauigkeit Gren-	10. Die Zentraleinheit einer EDV-Anlage faßt folgende Teile zusammen
_ (m)	zen gesetzt, während die Genauigkeit von Digitalrechnern eine Frage des technischen Aufwands ist.	 a) Eingabewerk, Ausgabewerk und Speicher b) Speicher, Rechenwerk und Leitwerk c) Leitwerk und Rechenwerk
	dured — Clint atropolic advisoration, and a contact frontial M.P.	☐ d) Rechenwerk und Speicher

5. Ein Wort innerhalb einer EDV-Anlage, bestehend aus Buchstaben und

a) numerisches Wort

		11. Periphere Geräte sind
zu 5. □ ⊠ □	Ein Wort aus Buchstaben und Ziffern wird alphanumerisches Wort genannt.	 a) Zentralspeicher, Eingabegeräte und Ausgabegeräte b) Eingabegeräte und Ausgabegeräte c) Eingabegeräte, Ausgabegeräte und externe Speicher
		12. Ein Programm besteht aus einer Folge von
zu 6.		a) Befehlen
	Der Gesamtvorrat aller Zeichen, also aller Buchstaben, Ziffern, Sonderzeichen und Steuerzeichen, wird Alphabet genannt.	 □ b) Befehlen und Daten, mit denen gearbeitet wird □ c) Daten, mit denen gearbeitet wird
		13. Was löst ein Befehl in einer EDV-Anlage aus?
zu 7.		□ a) eine Grundoperation
	Die Charakteristik einer Gleitkommazahl gibt die Stellenzahl an, die Zahl der Ziffern vor dem Komma. Der Programmierer kann	 b) eine Reihe von Grundoperationen in einer festen Reihenfolg c) eine Reihe von Grundoperationen nach vom Programm von gegebener Reihenfolge
	damit vor der Rechnung die Stellung des Kommas frei wählen.	□ c) niemals eine Sprungoperation
\boxtimes		14. Ein Befehl besteht aus
zu 8.	Die beiden letzten Ziffern, abzüglich 50 geben die Stellenzahl vor dem Komma an, also $52 - 50 = 2$ Stellen vor dem Komma. Sie	 a) drei Teilen, zwei Operationsteilen und einem Adreßteil b) einem Operationsteil und einem Adreßteil c) einem Anweisungsteil, einem Adreßteil und einem Operationsteil
	gehören nicht zur Ziffernfolge der eigentlichen Zahl.	15. Der Adreßteil eines Befehls enthält Angaben
	Note that the work will be a proper to the second but it	 a) wo sich die Daten befinden, mit denen gearbeitet werden so und wo die Ergebnisse abgespeichert werden sollen b) wo der nächste Befehl abgespeichert ist
zu 9.	vetladas	c) über die Adressen von Daten, mit denen gearbeitet werde
	Bei dezimaler Zahlendarstellung werden die einzelnen Bits einer Zeichengruppe meistens parallel, die Zeichengruppen selbst da-	soll oder über die Adresse des nächsten Befehls
	gegen seriell verarbeitet.	16. Bei EDV-Anlagen mit Einadreßbefehlen
zu 10.	- I Land think on yet his distribution of the file	 a) befindet sich der zweite Operand einer Rechenoperation grun sätzlich in einem festen Speicherplatz
	Leitwerk, Speicher und Rechenwerk bezeichnet man zusammen- fassend als Zentraleinheit.	 □ b) wird die Adresse des zweiten Operanden in einem zweiten Befehl angegeben □ c) ergibt sich die Adresse des zweiten Operanden durch einem zweiten Deranden durch einem zweiten Deranden durch einem zweiten Deranden durch einem zweiten Deranden in ein
	und toget that about the first the Ci	c) ergibt sich die Adresse des zweiten Operanden durch ein Zwischenrechnung im Adressenrechenwerk

zu 11.		17.	Be	ei Zw	eiadreßbefehlen mit arithmetischen Befehlen
	Als periphere Geräte werden alle Geräte bezeichnet, die nicht zur Zentraleinheit gehören, also alle Eingabegeräte, alle Ausgabe- geräte sowie die externen Speicher.			é	 werden die Adressen der beiden beteiligten Operanden ange- geben, das Ergebnis wird an einen festen Speicherplatz abge- speichert
zu 12.				l	 werden die Adressen der beiden Operanden angegeben, das Ergebnis wird unter der Adresse des einen Operanden abge- speichert
	Ein Programm besteht aus einer Reihenfolge von Befehlen, die nacheinander abgearbeitet werden. Das Programm befindet sich, zusammen mit Daten, mit denen gearbeitet wird, im Speicher der EDV-Anlage.			(r) wird die Adresse des einen Operanden angegeben, die zweite Adresse bezeichnet die Speicherstelle, in der sich der nächste Befehl befindet
zu 13.		18.	De	er Zw	reiadreßbefehl "Subtrahiere 712 256 hat folgende Auswirkung
	Durch einen Befehl wird eine Reihe von Grundoperationen aus- gelöst. Die Reihenfolge der Operationen ist entweder festverdrah- tet oder in einen Festwertspeicher abgespeichert. Sie kann nor- malerweise nicht vom Benutzer der Anlage beeinflußt werden.				 die Zahl 256 wird von der Zahl 712 subtrahiert die Zahl 712 wird vom Inhalt des Akkumulators subtrahiert; die Zahl 256 gibt die Speicherstelle an, in der sich der nächste Befehl befindet
	maierweise ment vom Benutzer der Amage Beemitast werden.			(c) der Inhalt der Speicherstelle 256 wird von dem Inhalt der Speicherstelle 712 subtrahiert, das Ergebnis wird in die Spei- cherstelle 256 abgespeichert
zu 14.				(der Inhalt der Speicherstelle 712 wird von dem Inhalt des Akkumulators abgezogen; das Ergebnis wird in die Speicher-
	Ein Befehl besteht aus zwei Teilen, einem Operationsteil und einem Adreßteil.				stelle 256 abgespeichert
		19.	D	urch (einen bedingten Sprungbefehl wird
zu 15.				ć	a) ein Befehl der Befehlskette übersprungen, wenn die geforderte Bedingung erfüllt ist
	Der Adreßteil eines Befehls enthält Angaben, wo die Daten zu finden sind, mit denen gearbeitet werden soll und wo das sich	10.		1	 beuingung erfuht ist der vorhergehende Befehl solange ausgeführt, bis die Bedingung erfüllt ist
	ergebende Ergebnis abgespeichert werden soll. Bei Sprungbefeh- len enthält der Adreßteil dagegen die Angabe, unter welcher Adresse der nächste Befehl abgespeichert ist.	(iwi		(die Befehlskette abgebrochen und an der im Befehl angege- benen Adresse wieder neu aufgenommen, wenn die Bedingung erfüllt ist; andernfalls wird zum nächsten Befehl übergegangen
zu 16.		20	7.7.		: Tl. 0.1:
\boxtimes	Bei EDV-Anlagen mit Einadreßbefehlen befindet sich der zweite	20.			einem Flußdiagramm versteht man a) den zeitlichen oder logischen Ablauf eines Programms
	Operand einer arithmetischen Operation in einem festen Speicher- platz, dem sogenannten Akkumulator. Dieser Akkumulator ist ein Register im Rechenwerk.				 b) eine zeichnerische Darstellung des magnetischen Flusses in einem Kernspeicher
	Register in Redienwerk.			(c) ein Diagramm, das den zeitlichen Ablauf eines Befehls durch das Leitwerk erkennen läßt

		21. In	n Arbeitsspeicher befinden sich
zu 17.	HALINGS SHARRING IN STREET, ST. C. C.		a) Daten und Befehle, jeweils an hierzu reservierten Speicher-
	Bei Zweiadreßbefehlen werden normalerweise die Adressen der beiden Speicherplätze angegeben, in denen sich die beiden Ope- randen befinden, mit denen gearbeitet werden soll. Das entste- hende Ergebnis wird unter der Adresse des zweiten Operanden abgespeichert, der hierbei verloren geht.		plätzen b) Daten und Befehle an beliebigen Speicherplätzen; die Befehle sind an ihrer Form zu erkennen c) nur die Daten; die Befehle sind im Leitwerk abgespeichert d) Daten und Befehle an beliebigen Speicherplätzen; sie unter-
	Bei einigen EDV-Anlagen wird jedoch das Ergebnis in festen Speicherstellen des Kernspeichers abgespeichert.		scheiden sich nicht durch ihre Form, sondern durch ihre Art der Bearbeitung
		22. D	as Leitwerk einer EDV-Anlage hat folgende Aufgaben
zu 18.	Vgl. hierzu die Ausführungen zu Frage 17.		fest im Leitwerk verdrahteten Programms b) es entschlüsselt nacheinander die Befehle eines Programms und modifiziert diese gegebenenfalls
⊠			signale ab
		23. In	m Befehlsregister befindet sich
zu 19.			a) der Operationsteil des Befehls b) der gesamte Befehl
	Liegt ein bedingter Sprungbefehl vor und ist die Sprungbedin-		
	gung erfüllt, so ergibt die im Sprungbefehl angegebene Adresse	24. D	as Befehlszählregister enthält nach Ausführung eines Befehls
	die Adresse des nächsten Befehls. Ist die Bedingung nicht erfüllt, so hat der Sprungbefehl keine Auswirkung. Es wird zum nächsten Befehl übergegangen. Diese Adresse ergibt sich durch Erhöhung der letzten Adresse im Befehlszählregister um eins.	mh C	b) die Anzahl der ausgeführten Befehle
			as Befehlszählregister enthält nach Ausführung eines unbedingten prungbefehls
zu 20.	Link Develoking der Struktur		a) die um den Inhalt eines Indexregisters erhöhte Adresse des
	Ein Flußdiagramm ist die graphische Darstellung der Struktur- merkmale eines Programmablaufs oder eines Datenflusses. Es	-umru	
	wird entweder der zeitliche oder der logische Ablauf aufgezeigt.	VEHER	c) die im Sprungbefehl angegebene Adresse

zu 21.		20. Indexregister berinden sich	
	Im Arbeitsspeicher befinden sich die Arbeitsdaten und die Befehle	 a) im Leitwerk und ermöglichen eine Umrechnung der Ad eines Befehls 	ressen
	des Programms. Besondere Speicherplätze sind nicht vorgesehen. Ob der Inhalt eines Speicherplatzes als Befehl oder z.B. als Zahl	b) im Speicherwerk und werden bei der Adressierung von programmen mit verwendet	Unter-
	interpretiert werden soll, ergibt sich erst durch das Programm.	c) im Leitwerk und ihr Inhalt kann zur Bildung einer S	prung-
		bedingung herangezogen werden	, ,
		27. Ein Volladdierer ist	
		a) ein Schaltnetz zur Addition zweier Dualziffern	
zu 22.		b) ein Schaltnetz zur Addition zweier Dualzahlen	
	The state of the s	□ c) eine andere Bezeichnung für das Rechenwerk	
	Das Leitwerk einer EDV-Anlage entschlüsselt die Befehle eines Programms, modifiziert gegebenenfalls die Adreßteile und gibt	28. Ein Serienaddierwerk hat	
	die zur Ausführung notwendigen Steuersignale ab.	a) nur einen Volladdierer und ein Übertragsflipflop	
		b) für jede Stelle einen Volladdierer, aber nur ein Über flipflop	
		☐ c) nur einen Volladdierer, aber für jede Dualstelle ein Über flipflop	rtrags-
		29. Im Akkumulator eines Rechenwerks	
00		a) wird das Ergebnis der Rechnung aufbewahrt	
zu 23.		 □ b) steht vor der Rechnung der eine Operand der Rechenope □ c) wird vor einer Subtraktion der Inhalt komplementiert 	eration
	Im Befehlsregister wird der gesamte Befehl während seiner Aus-	c) who voi emer subtraktion der innatt komplementiert	
	führung aufbewahrt.	30. Bei Paralleladdierwerken ist die Rechenzeit	
		a) durch die Stellenzahl der Zahlen bedingt	
		b) durch die Laufzeit des Übertrags bedingt	
zu 24.		□ c) unabhängig von der Stellenzahl und der Laufzeit des	Uber-
	Nach Ausführung eines Befehls durch das Leitwerk enthält das	trags genau eine Taktzeit lang	
	Befehlszählregister die Adresse der Speicherstelle, in der sich der	31. Bei einem Serienaddierwerk ist die Rechenzeit	
	nächste Befehl befindet.	a) durch die Stellenzahl der Operanden und der Taktfre	anona
		bestimmt	quenz
		b) unabhängig von der Laufzeit des Übertrags	
zu 25.		□ c) abhängig von der Zahl der Übertragsflipflops	
	Durch einen Sprungbefehl wird die Befehlskette abgebrochen und	32. In EDV-Anlagen wird die Subtraktion	
	an einer anderen Stelle wieder aufgenommen. Die im Sprung-	a) durch die Addition des Komplements durchgeführt	
\boxtimes	befehl angegebene Adresse wird zu diesem Zweck in das Befehls-	b) durch Subtraktionsschaltungen ermöglicht	
	zählregister transportiert und ergibt somit die Adresse des näch-	c) durch Unterprogramme ermöglicht, die von der Hers	teller-
	sten Befehls.	firma beim Kauf einer Anlage mitgeliefert werden	
	400	400	

zu 26.	
⊠	Alle drei Antworten sind richtig! Indexregister können Sonder- register im Leitwerk sein, es können jedoch auch Speicherstellen
	des Kernspeichers für diesen Zweck reserviert werden. Der Inhalt von Indexregistern wird zur Adressenmodifikation herangezogen
	und ermöglicht z.B. eine einfache Adressierung von Unterprogrammen. Weiter kann von ihrem Inhalt die Ausführung eines Sprungbefehls abhängig gemacht werden.
zu 27.	
	Ein Volladdierer ist in der Lage, zwei Dualziffern zu ihrer Summenziffer zusammenzuführen und gegebenenfalls einen Übertrag abzugeben.
zu 28.	
	Ein Serienaddierwerk besitzt nur einen Volladdierer und ein Ubertragsflipflop. Die einzelnen Dualstellen werden diesem Voll- addierer nacheinander zugeführt.
	The state of the s
zu 29.	
	Im Akkumulator steht vor der Rechnung der eine Operand. Das Ergebnis wird nach der Rechnung ebenfalls im Akkumulator auf- bewahrt.
20	
zu 30. □ ⊠	Bei Paralleladdierwerken ist die Rechenzeit im wesentlichen durch die Laufzeit des Übertrags bedingt.
zu 31.	
Zu 31. ⊠	Da die Dualstellen bei Serienaddierwerken nacheinander verar-
	beitet werden, ist die Rechenzeit direkt proportional der Stellen-
	zahl und der Taktzeit.
zu 32.	
	In den modernen Rechenanlagen wird die Subtraktion auf eine Addition des Komplements zurückgeführt. Es wird das B-Komple- ment oder das (B-1)-Komplement verwendet.

Zu Abschnitt 10

Aufbau elektronischer Schaltkreise*)

1.	Warum	werden gedruckte Schaltungen häufig verwendet?
	□ b)	wegen rationeller Herstellung wegen guter Wärmeleitfähigkeit wegen kompakter Bauweise
2.	Was wir	d bei gedruckten Schaltungen gedruckt?
	□ b)	die Leiterbahnen die passiven Bauelemente das Muster der Leiterbahnen
3.	Welche I bahnen?	Bauelemente lassen sich in gleicher Art herstellen wie die Leiter-
	□ b) □ c)	Widerstände Kondensatoren Induktivitäten Transistoren
4.	Wie ist o	las "Rastermaß" definiert?
	□ b) □ c)	Punkte beliebigen, aber gleichen Abstands Punkte mit dem Abstand von 2,5 mm voneinander Punkte mit dem Abstand von 2,54 mm voneinander Punkte mit dem Abstand von 1 mm voneinander
5.	Was ver	steht man unter Miniaturelektronik?
	□ b)	Elektronik der Uhren- und Fotoindustrie Schaltungen mit herkömmlichen Bauelementen, die jedoch auf ein Minimum verkleinert sind
	□ c)	Schaltungen mit integrierten Halbleiter- und Filmschaltungen

^{*)} Vgl. hierzu Abschnitt 10 in dem "Handbuch der Elektronik; Teil 2 — Digitaltechnik"

zu 1.	
	Gedruckte Schaltungen lassen sich wesentlich rationeller herstellen als Schaltungen in herkömmlicher Technik; zusätzlich haben sie den Vorteil kompakter Bauweise.
All the second	
zu 2.	
	Bei gedruckten Schaltungen wird das Muster der Leiterbahnen gedruckt.
zu 3.	
	Widerstände, Kondensatoren und Induktivitäten lassen sich nur in beschränktem Umfang — bezogen auf ihre elektrischen Werte — "drucken".
zu 4.	
	Da wegen des amerikanischen Einflusses häufig nicht-metrische Normen in der Elektronik gelten, kommen beide angekreuzten Rasterabmessungen nebeneinander vor.
zu 5.	
	Unter Miniaturelektronik sind Schaltungen mit herkömmlichen Bauelementen zu verstehen, die jedoch auf ein Minimum verklei- nert sind.

6.	Was	sin	d Filmschaltungen?
		b)	ihr Basismaterial besteht aus Filmmaterial die Leiterbahnen sind Filmstreifen Bauelemente und Leiterbahnen werden lötstellenfrei als dünne Filme aufgebracht
7.	Welc	he I	Unterschiede bestehen zwischen Dick- und Dünnfilmtechnik?
		a)	sie unterscheiden sich, wie der Name sagt, in der Dicke der Filme
		b)	in der Dickfilmtechnik werden Leiterbahnen und Bauelemente gedruckt, in der Dünnfilmtechnik als dünne Metallfilme auf- gebracht
		c)	keine wesentlichen Unterschiede
8.	In we	elch	em Größenbereich liegen die Widerstände der Filmtechnik?
		al	sie können beliebig groß sein
			nur sehr niedrige Werte sind möglich
			nur hochohmige Werte sind möglich
9.	Könn	en	Kapazitäten in der Filmtechnik beliebig groß gewählt werden?
	П	al	nein, Kapazitäten sind nicht herstellbar
		b)	는 '이 없었다. [1800년 15] 전 12 12 12 12 12 12 12 12 12 12 12 12 12
		c)	
0.	Waru	ım f	finden Filmschaltungen immer größere Anwendungsgebiete?
		a)	wegen ihrer einfachen, preiswerten Herstellung
			weil Innenverbindungen und Bauelemente in gleicher Tech- nologie hergestellt werden können
		c)	sie sind sehr zuverlässig, weil keine Lötstellen innerhalb einer Schaltung nötig sind
		d)	wegen des gemeinsamen Temperaturgangs aller Bauelemente
1.	Unter	de	m Begriff "Integrierte Schaltung" (IC) versteht man
		a)	ganz allgemein Schaltungen, in denen Bauelemente verschiedener Herstellungsart in einem Gehäuse untergebracht sind
		b)	komplette Schaltkreise, deren gesamte Bauelemente und Innenverbindungen in gleicher Herstellungsart auf Halbleiter- material erzeugt sind
		c)	Schaltungen, in die Halbleiterelemente hineinintegriert sind

a 6.	a la	12.	Warum können IC nur mit Hilfe der Planartechnologie hergestellt w den?	er
□ □ ⊠	Der Begriff "Filmschaltungen" soll zum Ausdruck bringen, daß es sich hier um hauchdünne Schichten (Filme) handelt.		 □ a) weil diese von jedermann beherrscht wird □ b) weil beliebig viel verschiedene Bauelemente auf einem S 	ili
			ziumscheibchen gleichzeitig hergestellt werden können \Box c) weil sie billig ist	
zu 7.		13.	Wie verhält sich ein integrierter Halbleiterwiderstand?	
\boxtimes	Der bedeutendste Unterschied liegt im verwendeten Material:			
	Metall-Oxid-Pasten in der Dickfilmtechnik, Metalle in der Dünn-		 □ a) wie jeder normale Widerstand □ b) er ist stark temperaturabhängig 	
\boxtimes	filmtechnik. Daher sind Dünnfilmschaltungen besser in Toleranz		 b) er ist stark temperaturabhängig c) er hat große Herstellungstoleranzen 	
	und vor allem im Langzeitverhalten.		C) et hat grobe Herstenangstoferanzen	
		14.	Welche Bauelemente werden in IC bevorzugt verwendet?	
			a) Widerstände	
zu 8.			□ b) Kondensatoren	
\boxtimes	Beschränkungen liegen lediglich in der Verlustleistung.		□ c) Transistoren	
	Descriminating of real state of the state of		□ d) Dioden	
		15.	Welche Nachteile hat die Sperrschichtisolation?	
			a) hohe kapazitive Belastung der Schaltkreise	
zu 9.			b) die Isolationssperrschichten dürfen nicht in Durchlaßrichte	ın
	Der hohe Platzbedarf beschränkt Kapazitäten auf verhältnismäßig		beansprucht werden	
\boxtimes	geringe Werte.		c) sie ist ein besonders teures Verfahren	
		16	Was unterscheidet unipolare IC von bipolaren IC?	
		10.		
zu 10.			a) sie haben kürzere Schaltzeiten	
	Filmschaltungen sind wegen des Wegfalls der internen Lötstellen		b) sie benötigen wesentlich weniger Herstellungsschritte	
	sehr zuverlässig; aber auch der Vorteil, alle passiven Bauele-	11	c) alle Bauelemente bestehen nur aus Transistoren	40
	mente gleichzeitig und in gleicher Technologie wie die Innenver-	11	d) die Bauelemente brauchen nicht voneinander ilosiert zu wer-	16
\boxtimes	bindungen herstellen zu können sowie der gemeinsame Tempera- turgang aller Bauelemente erschließen immer mehr Anwendungs-	17	Was versteht man unter Großschaltkreisintegration oder LSI?	
\boxtimes	gebiete.	11	a) große Schaltkreise werden miteinander verbunden	
	9		□ b) mehr als 100 Gatter auf einem Chip	
zu 11.			□ c) mehr als 1 000 Gatter in einem Gehäuse	
	Unter dem Begriff "Integrierte Schaltung" ist eine Schaltung zu			
	verstehen, deren Ausgangsmaterial ausschließlich aus Halbleiter-	18	Hybride Schaltungen sind	
\boxtimes	material (Silizium) besteht.			
	at the proposition of entropy of court to be a first	3		
			 b) eine Kombination aus Filmschaltungen und IC c) eine Kombination aus unipolaren und bipolaren IC 	
			C) elle Kombination dus ampoiaren and sipotaten te	
	— 188 —		— 189 —	

		19. Welche Vortelle naben nybride Schaltungens
zu 12. □ ⊠	Da die Planartechnologie z.B. bei Germanium nicht angewendet werden kann, sind IC auf Germaniumbasis bisher nicht möglich.	 a) äußerst kompakte Bauweise b) sehr billig c) lötstellenfreie Verbindungen ganzer Schaltungskomplexe
		20. Welche wichtigsten Kriterien bestimmen die Zugehörigkeit eines digitalen Schaltungskreises zu einer Schaltungsfamilie?
zu 13.	Ein integrierter Halbleiterwiderstand ist stark temperaturabhängig.	 a) Gehäuseart des Schaltkreises b) Störsicherheit c) Signalhub- und Versorgungsspannung d) Schaltzeit
zu 14.	Weil Transistoren ohnehin hergestellt werden müssen, kommt es kaum auf die Anzahl an. Deshalb findet man auch wenig echte Dioden, obwohl deren Herstellung eigentlich einfacher ist.	21. DCTL- und RTL-Schaltkreise werden nur noch selten verwendet wegen a) ihrer geringen Störsicherheit b) ihrer langsamen Schaltgeschwindigkeit c) ihres hohen Leistungsverbrauches
zu 15. ⊠ ⊠	Die großen Isolationsinseln belasten die Schaltung kapazitiv und vermindern damit die Schaltgeschwindigkeit, aber die Sperrschichtisolation ist immer noch das billigste Isolationsverfahren.	22. Die RCTL-Schaltungen a) sind besonders schnell b) verbrauchen nur sehr wenig Leistung c) haben besonders hohen Störabstand
zu 16.	Wegen der Gatekapazitäten sind unipolare Schaltkreise z. Z. noch merklich langsamer als bipolare IC. Die unter b), c) und d) ge- nannten Vorteile wiegen jedoch viel auf und erschließen neue Anwendungsgebiete.	23. Zu welcher Schalt- familie gehört die nebenstehende Schaltung? D2 D4 D5 D4 D5
zu 17.	Je mehr Funktionen auf einem Chip untergebracht werden können, um so preiswerter wird das fertige Produkt (auch wegen der Gehäusekosten usw.). Daher liegt der Trend der Herstellung bei LSI.	b) DTL c) mWRTL c D3 24. Wodurch wird in der unter Frage 23 abgebildeten Schaltung die Störsicherheit bestimmt?
zu 18. □ □ □	Hybride Schaltungen sind eine Kombination aus Filmschaltungen und IC.	a) durch den Widerstand R_1 b) durch die Dioden $D_1 - D_3$ c) durch die Dioden D_4 und D_5

— 190 **—**

zu 19.		25. Welche hauptsachlichen Unterschiede im Schaltungsaufbau von 11L- Schaltkreisen bestehen gegenüber DTL-Schaltungen?
	Hybride Schaltungen breiten sich gerade dort sehr weit aus, wo hohe Zuverlässigkeit gefordert wird (Raumfahrt, Militär). Ein zusätzlicher, sehr wichtiger Vorteil ist ihre große Packungsdichte.	 □ a) kleinere Widerstände □ b) Multi-Emitter-Transistor am Eingang □ c) niederohmiger Ausgangsverstärker
zu 20.		26. Was sind die Hauptvorteile der TTL-Schaltungen gegenüber den ande-
	Die Störsicherheit, die Signalhub- und Versorgungsspannung so- wie die Schaltzeit bestimmen als wichtigste Kriterien die Zuge- hörigkeit eines digitalen Schaltungskreises zu einer Schaltungs- familie.	ren gesättigten Schaltungsfamilien? a) hohe Schaltgeschwindigkeit b) großer Störabstand c) äußerst geringer Leistungsverbrauch d) niedriger Preis
zu 21.		
	Voraussetzung dieser Schaltungen sind möglichst genau gleiche Eingangswerte ihrer Transistoren. Weil diese Bedingung nur	27. Ungesättigte Schaltungen sind Schaltungen,
	schwer zu erfüllen ist, liegt ihre Störsicherheit so niedrig, daß DCTL- bzw. RTL-Schaltkreise kaum noch verwendet werden.	 a) deren Transistoren nicht übersteuert werden b) die mit unipolaren Transistoren arbeiten c) denen niemals die volle Betriebsspannung angeboten wird
zu 22.		Services, que committee de la biologna de la committe de la commit
	RCTL-Schaltungen sind besonders langsam, verbrauchen aber — für bipolare Schaltungen — sehr wenig Leistung.	28. Die logischen Zustände "0" und "1" in ECL-Schaltungen werden reali- siert durch
		□ a) — 5 V und 0 □ b) + 5 V und — 5 V □ c) — 1,58 V und — 0,75 V
zu 23.		29. Welche Nachteile haben ECL-Schaltungen?
	Die umstehende Schaltung gehört zur Schaltfamilie DTL.	 a) geringer Störabstand b) hoher Leistungsverbrauch c) geringe Schaltungsgeschwindigkeit d) geringer Fan out
		50
zu 24.		30. Nebenstehende Schaltung zeigt
	Die Störsicherheit wird hier durch die Restspannungen der Dioden D_4 und D_5 bestimmt. Anstelle der Diode D_4 wird auch häufig ein Transistor verwendet (vgl. hierzu Abb. 357 des Handbuchs "Digitaltechnik").	a) einen Halbaddierer b) ein RS-Flipflop c) ein Antivalenz-Gatter
		103

AND DESCRIPTION OF THE PROPERTY OF THE PROPERT	31. Was 1st das Pillizip des Master-Slave-i lipitop?
 Zu 25. Mit dem Multi-Emitter-Transistor am Eingang wird eine höhere Schaltgeschwindigkeit erreicht. Ebenso ist der Ausgangsverstärker für die Geschwindigkeit wichtig (der aber auch bei DTL vorkommt). 	 a) zwei unabhängige Flipflops sind in einem Gehäuse untergebracht b) die Zahl der Eingänge läßt sich beliebig erweitern c) das Master-FF schützt das Slave-FF gegen Störeinflüsse d) zwei speicherfähige, hintereinandergeschaltete Stufen
zu 26. □ TTL-Schaltungen sind z. Z. am weitesten verbreitet, deshalb liegt auch ihr Preis erstaunlich niedrig. □	 32. Das JK-Master-Slave-Flipflop unterscheidet sich gegenüber dem Master-Flipflop dadurch, daß □ a) zusätzliche Eingänge über J und K geschaffen werden können □ b) der Zustand der Ausgänge niemals unbestimmt ist □ c) es nur in wenigen Fällen verwendbar ist
zu 27. ☑ Wenn die Basis eines Transistors nur soviel Ladungsträger erhält □ wie sie zur Aufrechterhaltung des Kollektorstroms benötigt, wird keine Zeit zum Abtransport überflüssiger Ladungsträger beim Schalten gebraucht: ein Mittel, die Schaltzeit drastisch zu verkürzen. Hiervon machen ungesättigte Schaltfamilien Gebrauch.	 33. Unipolare IC werden hauptsächlich verwendet a) in der Konsumelektronik b) in digitalen Schaltungen c) in linearen Schaltungen 34. Wieviel Bauelemente besitzt ein unipolares NOR-Gatter mit 3 Eingängen?
zu 28. □ Die den Ausgängen eingeprägten Ströme von 2,96 bzw. 2,4 mA □ definieren die logischen Zustände noch besser als die beiden Spannungen.	a) 3 Transistoren und 3 Widerstände □ b) 3 Transistoren und 1 Widerstand □ c) 3 Transistoren und einen als Arbeitswiderstand geschalteten vierten Transistor
zu 29. ☐ Ihr einziger Nachteil liegt — neben den wesentlich höheren Preisen — in ihrem hohen Leistungsverbrauch. In der Schaltgeschwindigkeit übertreffen sie alle anderen Schaltfamilien, im Störabstand sind sie durchschnittlich.	 35. COSMOS-Schaltungen sind besonders interessant, weil sie a) sehr wenig Leistung verbrauchen b) sehr schnell sind c) in beiden logischen Zuständen niedrige Ausgangsimpedanzen haben
zu 30. □ Man spricht hier auch von kreuzgekoppelten Gattern. □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	36. Unter dem Begriff "dynamisches Schieberegister" versteht man □ a) sehr schnelle Schieberegister □ b) Schieberegister aus unipolaren Transistoren, deren Gatekapazitäten als Zwischenspeicher dienen □ c) Schieberegister mit veränderbarer Ausgangsamplitude

zu 31.	
	Das Slave-FF übernimmt die im Master-FF abgelegte Information
	Zusätzlich schützt das Master-FF das Slave-FF gegen Störeinflüsse
zu 32.	
	Das JK-Master-Slave-Flipflop erreicht durch Rückkopplung de Ausgänge auf die Eingänge, daß der Zustand der Ausgänge nie mals unbestimmt ist. Es ist das am meisten verwendete Flipflop
zu 33.	
	Neuerdings findet man auch Operationsverstärker mit MOS-FET- Eingangsstufen.
zu 34.	
	Ein unipolares NOR-Gatter besitzt bedeutend weniger Bauele- mente als ein gleiches bipolares Gatter.
zu 35.	
	Der große Vorteil der COSMOS-Schaltungen liegt im äußerst geringen Leistungsverbrauch, aber auch die für unipolare IC niedrigen Ausgangsimpedanzen machen das COSMOS-Prinzip attraktiv.
zu 36,	
□	Der unkomplizierte Aufbau dynamischer Schieberegister wurde erst durch unipolare Transistoren möglich.

Handbuch der Elektronik

Teil 3 - "Datenverarbeitung; Technik und Betrieb"

Nachdem im ersten und zweiten Teil des "Handbuchs der Elektronik" die Grundlagen der Elektronik und ihre Anwendung in der linearen und der digitalen Technik eingehend behandelt worden sind, werden diese Themen im dritten Teil weitergeführt. Im einzelnen werden folgende Stoffgebiete ausführlich behandelt:

Mikroelektronik (gedruckte Schaltungen, integrierte Filmschaltungen, integrierte bipolare und unipolare Halbleiterschaltungen, hybride Schaltungen).

Anwendung der Mikroelektronik (bipolare Schaltungsfamilien, unipolare Digitalschaltungen, lineare Schaltungen).

Aufbau und Arbeitsweise von EDV-Anlagen (Aufbau einer EDV-Anlage mit Einund Ausgabe, Rechen- und Steuerwerk, Speicher, Aufbau und Ablauf eines Befehls, Programmierung).

Leitwerk (Befehlscodierung, Befehlszähler, Befehls- und Adressenregister, Indexregister; Zusammenarbeit von Leitwerk mit Rechenwerk und Speicher).

Rechenwerk (Serien- und Parallelrechenwerk, dezimales und duales Rechenwerk).

Speicher (Speicherverfahren, Speichermedien, Adressierung, Speicherorganisation, Auswahlverfahren).

Periphere Geräte (Trommel-, Platten-, Band- und Magnetkartenspeicher, Lochkarten- und Lochstreifengeräte, Schnelldrucker, Datensichtgeräte).

Beispiel von Datenverarbeitung auf einer EDV-Anlage (Zusammenarbeit aller Anlagenteile anhand eines Programmablaufs, dabei genaue Betrachtung typischer Einzelschritte).

Das Lehr- und Lernbuch enthält eine Vielzahl von Abbildungen und Kennlinien und weiter viele ausführliche Rechenbeispiele, die für den Techniker auf praktische Fälle zugeschnitten sind.

Fachwörter des Fernmeldewesens

Abkürzungen; Begriffsbestimmungen; Formelzeichen usw.

Dieses empfehlenswerte Nachschlagewerk enthält über 3000 Begriffe und Abkürzungen des Fernmeldewesens, von denen mehr als 2000 sachbezogen erläutert werden. Bei diesem Buch handelt es sich um ein leichtverständliches und übersichtlich geordnetes Fernmelde-Fachwörterverzeichnis, das Lehrenden und Lernenden, dem Praktiker im Fernmelde- und fernmeldetechnischen Betriebsdienst sowie dem Beamten im Verwaltungsdienst gute Dienste leisten wird.

Die wichtigsten Fachbegriffe und Abkürzungen aus dem Verwaltungsdienst, dem Haushalt und den Teilnehmerdiensten, dem Fernsprechdienst (Hand), dem Telegrammdienst, der Vermittlungs- und Übertragungstechnik, dem Fernsprechbetrieb und -entstörungsdienst, der Telegrafen-, Funk- und Linientechnik sowie dem Fernmeldezeugwesen sind im einzelnen nach den Aufgabenbereichen für Fernmeldeämter aufgeteilt und ausführlich erläutert. Wichtige Fachbegriffe, für die es keine Abkürzungen gibt, sind in einem besonderen Abschnitt zusammengefaßt worden. Die Begriffe, Formelzeichen und Einheiten aus der Physik und der Elektrotechnik sowie aus allen Fachbereichen der Fernmeldetechnik werden im einzelnen aufgeführt, wobei sämtliche heute gültigen Einheitssysteme berücksichtigt worden sind.

Gesamtübersicht über das Lehrmittelvorhaben Halbleitertechnik Elektronik Datenverarbeitung

- Grundlagen der Elektronik
 - Repetitor "Grundlagen der Elektronik"

Handbuch der Elektronik

- Teil 1 Analogtechnik
 - Repetitor "Analogtechnik"
- Teil 2 Digitaltechnik
 - Repetitor "Digitaltechnik"
- Teil 3 Datenverarbeitung; Technik und Betrieb
 - Repetitor "Datenverarbeitung;
 Technik und Betrieb"
- Fachwörter der Elektronik
- Mathematik für den Elektroniker

Sämtliche Lehrwerke können bestellt werden bei dem

Institut zur Entwicklung moderner Unterrichtsmedien e. V.

28 Bremen 1, Bahnhofstraße 10, Fernsprecher 04 21 / 31 52 85 oder 31 22 48